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TrajectoryCNN: A New Spatio-Temporal Feature
Learning Network for Human Motion Prediction

Xiaoli Liu
and Huaping Liu

Abstract— Human motion prediction is an increasingly
interesting topic in computer vision and robotics. In this paper,
we propose a new end-to-end feedforward network, Trajec-
toryCNN, to predict future poses. Compared with the most
existing methods, we introduce a new trajectory space and
focus on modeling motion dynamics of the input sequence with
coupled spatio-temporal features, dynamic local-global features,
and global temporal co-occurrence features in the new space.
Specifically, the coupled spatio-temporal features describe the
spatial and temporal structural information hidden in a natural
human motion sequence, which can be easily mined using CNN
by simultaneously covering the spatial and temporal dimensions
of the sequence with the convolutional filters. The dynamic
local-global features encode different correlations among joint
trajectories of human motion (i.e. strong correlations among
joint trajectories of one part and weak correlations among joint
trajectories of different parts), which can be captured by stacking
multiple residual trajectory blocks and incorporating our skele-
tal representation. The global temporal co-occurrence features
represent different importance of different input poses to mine
the motion dynamics for predicting future poses, which can be
obtained automatically by learning free parameters for each pose
with our TrajectoryCNN. Finally, we predict future poses with
the captured motion dynamic features in a non-recursive manner.
Extensive experiments show that our method achieves state-
of-the-art performance on five benchmarks (e.g. Human3.6M,
CMU-Mocap, 3DPW, G3D, and FNTU), which demonstrates the
effectiveness of our proposed method. The code is available at
https://github.com/lily2lab/TrajectoryCNN.git.

Index Terms—Human motion prediction, spatio-temporal
feature learning, CNN, skeleton.

I. INTRODUCTION

UMAN activity analysis has been an important topic in
computer vision due to the undeniable significance in
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Fig. 1. Human motion prediction. The blue poses are the observed poses,
and the red poses are the future poses.

a number of applications, ranging from the biomechanics of
human movement [1], video surveillance [2], [3], to human-
machine interaction [4], [5], and service robotics [4], [5].
Among many problems in human activity analysis, how to
predict future human motion based on the currently observed
poses is of great importance to enable automated systems or
robots to seamlessly interact with people [6], [7]. For instance,
a service robot can provide immediate support to an elderly
person to avoid danger if the system is able to predict the
person is likely to fall. In this paper, as is shown in Fig. 1,
we focus on the problem of human motion prediction which
aims to predict the future poses based on the observed poses.

Coupled spatio-temporal modeling plays a key role to pre-
dict future poses [8]-[10]. In general, previous spatio-temporal
modeling used two major types of methods, RNN (Recurrent
Neural Network) [11]-[15] and CNN (Convolutional Neural
Network) [8]-[10], [16]. (1) RNN models [11], [12], [14]
are especially powerful in processing short-term temporal
information while having an inherent weakness in spatial
modeling. For example, Martinez et al. [11] built their RNN
model to predict future poses entirely based on GRU (Gated
Recurrent Unit). This method mainly focused on capturing
temporal information and ignored a part of the spatial structure
of the human body. (2) CNN models [9], [10], [16] have
been successfully used to predict human poses but can not
capture the coupled spatio-temporal structural information
well. In previous research, Xu et al. [10] and Liu ez al. [9], [10]
proposed CNN-based methods and processed the spatial and
temporal information separately for predicting future poses.
However, when a human pose changes across multiple frames,
the spatial and temporal information is intrinsically coupled.
Separately processing of the spatial and temporal information
inevitably breaks the natural state of the information when
representing the pose changes, and therefore is ineffective to
predict complicated motions.

Another important aspect of human motion prediction is
the global temporal co-occurrence modeling. Different frames
have different contributions for predicting human motion.
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For example, for a complex motion such as “hug”, the frames
that contain the basic motions “grab” and “touch” are impor-
tant than other frames to characterize the complex motion.
Therefore, to better mine motion dynamics for predicting
complex motion, it is important to measure the importance
of each pose in the motion sequence. In this paper, we name
the different importance of all input poses as global temporal
co-occurrence relationships. However, most of the existing
works focused on modeling the global temporal information
of the input poses and ignored the co-occurrence relationships
among them [9], [10], [17]. They modeled the informa-
tion of different temporal scales in different temporal levels
and shared weight in each temporal level, making it diffi-
cult to learn free parameters for each pose to capture the
global temporal co-occurrence relationships of the input poses.
Butepage ef al. [8] proposed a temporal Encoder to model
diffident temporal scale information. Due to the local shared
mechanism of convolution, different subsequences share the
same weights, and thus it is difficult to learn free parameters
for each pose to capture the global temporal co-occurrence
relationships of the input poses. Some works focused on mod-
eling the spatial co-occurrence information among joints of the
human body [18], [19] but ignored the temporal co-occurrence
modeling of the input poses. For example, Li et al. [18] and
Zhu et al. [19] modeled the spatial co-occurrence relationships
among joints to describe actions. However, this method lacked
the modeling of global temporal co-occurrence information
and therefore can not to predict pose changes in a long
period.

To address the aforementioned limitations, we introduce a
new trajectory space and model the motion dynamics of human
motion in the new space. Moreover, we propose a new end-to-
end spatio-temporal feature learning network, TrajectoryCNN,
to achieve trajectory space transformation, capture motion
dynamics, and predict future poses simultaneously. The pro-
posed TrajectoryCNN can automatically transform the human
motion sequence from the pose space to the trajectory space.
In the trajectory space, the global temporal information and
dynamic local-global correlations among joint trajectories of
human motion can be easily captured since each element in the
trajectory space encodes the global joint trajectory information
of human movement. Different from prior works, we capture
the motion dynamics by simultaneously encoding the coupled
spatio-temporal features, dynamic local-global features, and
global temporal co-occurrence information from a sequence
of poses. Specifically, the coupled spatio-temporal features
can be effectively captured with our encoder by covering
multiple joint trajectories using filters in the trajectory space.
Based on our proposed network incorporating our specially
designed skeletal representation, the dynamic local-global fea-
tures are extracted to model the strong correlations among
joint trajectories of the same part, and the weak correlations
among joint trajectories of different parts. Using our Trajecto-
ryCNN and our skeletal representation, the global temporal
co-occurrence features can be easily captured by learning
free parameters for each pose. Finally, future poses can be
predicted in a non-recursive manner using the captured motion
dynamics.
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The main contributions of this research are highlighted as

follows:

« A new trajectory space is introduced and in the new space,
we model the motion dynamics of the input sequence
by simultaneously capturing the coupled spatio-temporal
structure, dynamic local-global correlations, and the
global temporal co-occurrence relationships. Compared
with prior methods, we can model the different cor-
relations among joint trajectories with the dynamic
local-global correlations and measure the different impor-
tance of different input poses for mining motion dynamics
with the global temporal co-occurrence relationships,
which is important to achieve more accurate predictions.

o A new simple but effective end-to-end feedforward net-
work, TrajectoryCNN, is proposed to simultaneously
achieve trajectory space transformation, model motion
dynamics, and predict future poses by combining our
skeletal representation. The proposed network automat-
ically transfers the human motion sequence to the trajec-
tory space, so as to mine the motion dynamics in this
space for predicting human motion.

o Experimental results show that our proposed method
achieves state-of-the-art performance on five benchmark
datasets, demonstrating the effectiveness of our method.

The remainder of this work is organized as follows:

Section II summarises the related literature on human motion
prediction. Section III describes the proposed TrajectoryCNN
to predict future human motion. Section IV reports experimen-
tal results on five benchmark datasets both quantitatively and
qualitatively. Section V briefly concludes our paper.

II. RELATED WORK

In order to accurately predict the human motion, researchers
have done significant investigations. We review these works
from two aspects: the spatio-temporal modeling and the
long-term temporal modeling of human motion.

A. The Spatio-Temporal Modeling

The spatio-temporal modeling is key to the sequence
learning (including human motion prediction) [11], [20]-[22].
A typical methods of spatio-temporal modeling for predict-
ing huamn motion sequence are built with RNNs [11], [17],
[23]-[25]. Due to the inherent weakness of RNNs, these
models can not capture the spatial features of the human
body and long-term temporal dependencies well. For example,
Chiu et al. [23] modeled the latent hierarchical structure of
human motion by capturing the temporal dependencies with
different temporal scales hierarchically using LSTM cells but
did not capture the spatial structure of the human body well.
Martinez et al. [11] proposed a residual architecture to model
the velocities of the human motion sequence using GRUs.
But the author only focused on short-term temporal modeling
and ignored modeling the long-term temporal dependencies
and spatial structure of the human body. To alleviate these
limitations hidden in RNNs, some literature is proposed [13],
[14], [26], [27]. Jain ef al. [13] proposed a structural-RNN
model to encode the high-level spatio-temporal structure of
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the human motion sequence by combining LSTMs and fully
connected (FC) layers. Guo et al. [27] modeled the local
structure of the human body using FC layers and captured
the long-term temporal dependencies with GRUs, but ignored
capturing the interactions among different limbs.

Another type of spatio-temporal modeling for predict-
ing human motion is based on feedforward networks
[16], [28]-[31]. There are two schemes to model the
spatio-temporal information: modeling the spatial and tempo-
ral information separately, modeling the spatial and temporal
information equally. For example, Cho et al. [28] modeled the
spatial and temporal information of previous frames separately.
In detail, they first modeled the spatial information using
VGG-16 [32], and then proposed T-CNN (Temporal Convolu-
tional Neural Network) to model the temporal information of
previous frames by using convolution across temporal dimen-
sion. Li et al. [16] modeled the spatial and temporal informa-
tion using CNN. The authors modeled the local characteristic
of the human body depending on a large convolutional kernel,
which is not effective enough [32]-[34]. Moreover, this model
focused on modeling the spatial correlations among joints of
the human body in the pose space and can not capture the
dynamic correlations among joints of the human body when
the body changes over the whole temporal context. Therefore,
their model was not effective to capture the motion dynamics
for predicting human motion. Mao ef al. [31] first modeled
the temporal information of the human motion sequence using
DCT (Discrete Cosine Transform) and then captured the
spatial dependencies of joint trajectories using GCNs (Graph
Convolutional Networks), and also achieved state-of-the-art
performance. But their temporal modeling relied on manual
features and their model was not built end to end, which
was not flexible enough to capture the motion dynamics for
predicting human motion.

B. The Long-Term Temporal Modeling of Human Motion

Most of the existing models for human motion prediction
built with RNN (such as LSTM, GRU, etc) are inherently hard
to capture the long-term temporal dependencies of previous
frames using its recurrent unit [11], [12].

Other methods have been reported to model the long-term
dynamics of previous poses hierarchically [9], [10], [17],
[23]. Because of the shared weight mechanism in each tem-
poral level, these models can not learn free parameters for
each frame. Therefore, it is difficult to mine the temporal
co-occurrence relationships of all input frames. For example,
Xu et al. [10] and Liu et al. [9] captured the temporal infor-
mation of adjacent frames using CMU (Cascade Multiplicative
Unit) [10] and modeled the global temporal information using
CMUs hierarchically. In each temporal level, the CMUs shared
parameters. Therefore, it was difficult to capture the temporal
co-occurrence information in a given full temporal context.

Moreover, other researchers modeled the global tem-
poral information of all history poses [8], [29], [35].
Butepage et al. [8] captured the temporal information of all
input poses using multiple FCs. Li er al. [35] modeled the
long-term temporal information of previous poses by mapping
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the input sequence into deep features using autoencoder [36].
Butepage et al. [8] and Li er al. [35] treated the spatial
and temporal information equally and ignored the difference
among spatial and temporal dimensions so that their model can
not capture the coupled spatio-temporal structural information
and the global temporal co-occurrence relationships of the
input poses well.

Recently, some  researchers  modeled  temporal
information using dilated convolutions [29]. For example,
Pavllo et al. [29] proposed a QuaterNet to predict future
human motion by modeling the long-term temporal
information of the input poses hierarchically using dilated
convolutions.

Although great success has been made in the long-term
temporal modeling, little study has been done to analyze the
global temporal co-occurrence information of the previous
sequence. Therefore, these models discussed above did not
measure the different contributions of different input poses
for describing the complex human motion sequence. This
motivates us to design a new model that enables the network
to get a global response from all input poses to mine the
global temporal co-occurrence features of the human motion
sequence.

III. METHODOLOGY
A. Problem Formulation

Human motion sequence can be represented by a
group trajectories of a set of 3D joints. Given an
input human motion sequence S = {pi1, p2, -+, pn, } Wwith
length N; and its corresponding future human ‘motion
sequence S= {P1, P2,---, Pn,} Wwith length N;,, where
piv={Jik }llc\?:l and Pin= {J,-zkz}]]:;’:l are the i1-th pose of §
and i>-th pose of S, respectively, Jilﬁ = (Xiyky» Yitky» Zirky) 18
the ki-th joint of the i1-th pose of S, Ji,k, = (Xisky» Visks > Zinks)
is the k»-th joint of the i>-th pose of S, Nj is the number of
joints. Then human motion prediction can be formulated as a
mapping S — S from the previous human motion sequence S
to the future human motion sequence S.

Most of the existing methods were commonly proposed
based on the Encoder-Decoder framework [11], [37], [38]. The
encoder was usually used to encode the previous poses into an
intermediate representation that represents the motion dynam-
ics of the previous poses, and the decoder was used to restore
the spatial and temporal information of the future poses.
Following this framework, in this paper, we propose a new
network, TrajectoryCNN, to model the motion dynamics of
the input sequence and predict future motion sequence end to
end. We model the motion dynamic law of human motion in a
new trajectory space by encoding the coupled spatio-temporal
information and global temporal co-occurrence features of
previous poses and also modeling the different correlations
among joint trajectories.

B. Definition

We introduce five concepts related to the prediction of
human motion as follows.
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Fig. 2.
convolutional operation with 3 x 3 filter, and 64 denotes the number of output

o Term 1 (Coupled spatio-temporal structure): the evo-
lIution of human poses is an organic whole, including
spatial and temporal dimensions. For representing human
motion, the spatial information is closely related to
the temporal information. Therefore, the human motion
sequence has a coupled spatial-temporal structure. In
essence, the prediction of human motion is a problem
of coupled spatio-temporal modeling.

Term 2 (Dynamic local-global correlations): human
movement is constrained by the skeletal bone of the
human body. The constraints among joints of one bone
are stronger than that among joints of different bones.
Moreover, in the process of human motion, the state
of the human body will change over time. Therefore,
for a human motion sequence, different joint trajectories
have different correlations. The human body is usually
divided into five parts according to the human anatomy,
including two arms, two legs, and trunk [5]. Because joint
trajectories are a set of joints evolving with time. In this
paper, we name the correlations among joint trajectories
of the same part as dynamic local correlations since joint
trajectories of the same part cover a local area of the
human motion sequence; we name the correlations among
joint trajectories of different parts as dynamic global
correlations since joint trajectories of different parts may
cover the whole sequence of the human motion. Finally,
we name the different correlations among different joint
trajectories of human motion as dynamic local-global
correlations.

Term 3 (Global temporal co-occurrence relationships):
in a complex human motion sequence, different poses
have different contributions to mine motion dynamics of
observed poses for predicting future poses. We name the
relationships of these poses as temporal co-occurrence
relationships. To better mine the motion dynamics, it is
important to capture the relationships of these poses.
In this paper, we model the temporal co-occurrence
relationships of all input poses, and therefore we name
them as global temporal co-occurrence relationships.

Overall architecture of our proposed TrajectoryCNN. Convolutional layers are in orange, such as (3 x 3 Conv, 64), where “3 x 3 Conv” denotes

channels. (N;, D, N;;) denotes the shape of the output tensor.

o Term 4 (Pose space): the human pose can be represented
by the positions of a group of joints, therefore, the space
that includes all poses is considered as the pose space.
Term 5 (Trajectory space): in the trajectory space, each
point represents the trajectory information of a special
point evolving with time. Since a human motion sequence
can be considered as a group of joint points evolving with
time, the human motion sequence S in the trajectory space
can be defined as equation 1.

ey

where iy = 1,2,---, N, ki = 1,2,---,Nj, Nj is
the number of joints and N;, is the length of the input
sequence S. (x , ¥}, ,Z;,) denotes the ki-th point in
the trajectory space, corresponding to the ki-th joint
trajectory from the sequence S in the pose space. f(-)
denotes the trajectory space transformation from the pose
space to the trajectory space, which can be built with one
1 x 1 convolutional layer and our skeletal representation
shown in Fig. 4 and Section III-C.

(x]/q s yl/q s Z;fl) = f(-xilkl > Yirky» Zi1k|)

C. Architecture of TrajectoryCNN

In this section, a new spatio-temporal convolutional net-
work, TrajectoryCNN, is proposed to predict future poses as
is shown in Fig. 2, which mainly consists of three parts:
trajectory space transformation, Encoder, and Decoder.

Skeletal Representation: we first describe the skeletal rep-
resentation used in our paper. As is shown in Fig. 3, given
a human motion sequence S = {p1, p2,-- -, pNti} with length
N;;, the poses in sequence S can be represented by a tensor
X =1[p1;p2---5pi--- ;pNn]’ where the joints are set as
the width, the coordinates (e.g. x, y, and z) are set as the
height, and the frames are set as the channel. Here, as is shown
in equation 2, p; is the [-th pose of sequence S. The shape of
the input tensor is N; x D x N, where N; is the number of
joints and D is the dimension of each joint. To conveniently
capture the dynamic local-global features of joint trajectories,
consistent with [9], as is shown in Fig. 3, the joints of
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f 1
rightarm leftarm  trunk  rightleg leftleg
I

Fig. 3. Skeletal representation. The left one denotes the skeleton of the
human body, and the right one denotes the skeletal representation of the input
sequence. The joints of the same part are placed in the adjacent areas.

er

D 7 change view and zoom
. (just for explanation)
=N \

N,xDxN,

D coordinates (x, 1,z
() Pose sequence : N, x N, x D (o222

N, : joints
() 2D filter: 1x1xC (C=N,)

N, :poses

Joints trajectories |
along the z-axis. | |

Joints trajectories
along the y-axis.

R Joints trdjectories
Joints trajectories in 3D space alopg the x-axis.

)

Fig. 4. Trajectory space transformation. Taking the joints of the left
leg as an example, from top to bottom, we show a diagram of trajectory
space transformation using 2D convolution, the corresponding human motion
sequence, and the joint trajectories in 3D space and along each axis, where
the filter covers one joint trajectory along one axis across all time-steps. Note:
the channel of 2D filter (i.e. C) is usually ignored, and we show it explicitly
to explain the modeling of joint trajectories.

the same part are placed in the connected positions. Finally,
the organized order of different parts of the human body
is right arm, left arm, trunk, right leg, and left leg. The
detailed joint annotations of the skeletal representation refer
to Fig. 11(d).

X1 YL 2
X2 Y2 o @2

Pl = . 5 l:1925"'5NTl‘ (2)
XLNj YLNj  ZLN;

Trajectory Space Transformation: according to the defi-
nition of the trajectory space, each point in the trajectory
space represents the trajectory information of a special point
over time. Therefore, compared with the original pose space,
the trajectory space contains richer trajectory information,
which can easily model the global temporal information of the
trajectory of the point. To better mine the motion dynamics
of joint trajectories of human movement, the original motion
sequence is converted into the trajectory space by equation 1.
Meanwhile, two findings appear naturally: (1) due to the
physical constraint of the human body, different joints have
different trajectories; (2) as is shown at the bottom of Fig. 4,
joint trajectories along different axes are different. Therefore,
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during trajectory space transformation, each joint trajectory
and its trajectory along each axis can be treated separately.

In this paper, as is shown in Fig. 2, the trajectory space
transformation f(-) in equation 1 is built with one 1 x 1
convolutional layer. As is shown in Fig. 4, when the temporal
dimension is specified as the channel, the 1 x 1 filter only
covers one joint trajectory along one axis, which can distin-
guish: (1) one joint trajectory from other joint trajectories;
(2) one joint trajectory along one axis from other axes. With
the specially designed skeletal representation and the 1 x 1
convolutional layer, we can get the global response from all
input poses, and each element in the output feature map of this
layer encodes the information of one joint trajectory along
one axis. Therefore, the output feature maps of the 1 x 1
convolutional layer encode the information of joint trajectories
of human movement, so that we can achieve trajectory space
transformation.

Encoder: the encoder aims to mine the motion dynamics of
the human motion sequence in the trajectory space. Therefore,
the human motion sequence will be encoded into a latent
representation 7', which can be formulated as equation 3.

T:¢(x;’y;az;)a J=1’299Nj (3)

where ¢(-) denotes the encoder.

As is shown in Fig. 2, our encoder mainly consists of four
trajectory blocks. Each trajectory block mainly consists of
five 2D convolutional layers, and each convolutional layer is
followed by a Leaky ReLLU and Dropout layer to improve the
performance of the network and also avoid overfitting.

The motion dynamics can be captured from these
perspectives:

1) Coupled Spatio-Temporal Features: We capture the
coupled spatio-temporal features to model the coupled spatio-
temporal structure of human motion. As is shown in Fig. 2,
the width, the height, and the channel of the feature maps in
the encoder represent the joints, coordinates, and trajectories of
joints, respectively. In our encoder, the filter size is set to 3 x 3,
covering multiple joint trajectories. Therefore, the coupled
spatio-temporal features of the input sequence can be easily
modeled in the encoder from the joints, coordinates, and
trajectories.

2) Dynamic Local-Global Features: We capture the
dynamic local-global features to model the dynamic
local-global correlations among joint trajectories of human
movement, the dynamic local-global features can be captured
from two folds:

a) Trajectory block: As is shown in Fig. 2, a new back-
bone layer, trajectory block, is proposed to build our encoder,
mainly including five convolutional layers. The filer size of
these convolutional layers is set to 3 x 3, covering multiple
joint trajectories of one part, which enables the network to
model the strong correlations among local joint trajectories of
human movement by combining our skeletal representation.
The lower layer usually captures fine-grained features (includ-
ing dynamic local features), while the deeper layer captures
coarse-grained features (including dynamic global features).
In the trajectory block, the deeper layer is connected with the
lower layer. The residual connections in the trajectory block
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have two advantages: (i) obtain point-level features. The 1 x 1
convolution in the residual connections enables the network
to obtain the point-level features from the lower layer since
the 1 x 1 filter covers one joint trajectory along one axis;
(i1) enhance coarse-grained features. The residual connections
provide a shortcut from the lower layer to the deeper layer,
enabling the network to enhance the coarse-grained features
by element-wisely adding the point-level features.

b) Stacking multiple trajectory blocks: Multiple trajec-
tory blocks are stacked to enlarge the receptive filed to capture
a larger spatial context such as dynamic global features.
In this way, the dynamic local-global features can be captured
from local to global. In this paper, the filter size is set
to 3, and the stride is 1. Therefore, the receptive field of
the first convolutional layer in the first trajectory block is 3
(cover 3 joints), and the receptive field of each layer will
be increased by 2. The receptive field of the second layer
in the third trajectory block is 25, which is large enough to
cover all joints of the human body (in this paper, excluding
the unchanged joints and repeated joints, 25 joints need to be
predicted at most). Therefore, 3 trajectory blocks are needed
to capture the global relationships among joint trajectories
of human movement. Moreover, we empirically show that
adding another trajectory block can further improve the final
performance, and there is no need to stack more trajectory
blocks because the performance is no longer improved.

Finally, the shape of the output tensor in the encoder is
(Nj x D x 64), denoting the learned dynamic features of
the input sequence. Specifically, each element of the output
tensor denotes the spatio-temporal features of a joint trajectory
along one axis, including the correlations among different
dimensions, the correlations among joint trajectories of the
same part, and the global features of all joints.

3) Global Temporal Co-Occurrence Features: We capture
the global temporal co-occurrence features to describe the
global temporal co-occurrence relationships of all input poses.
The key to modeling global temporal co-occurrence relation-
ships of the input sequence is to learn free parameters for
each pose. As is shown in Fig. 4, the filters cover the whole
temporal axis, and thus we can learn free parameters for
each pose with these filters. Therefore, these filters encode
the global temporal co-occurrence relationships of the input
poses, and different filters encode different global temporal
co-occurrence relationships. Therefore, during trajectory space
transformation, the global temporal co-occurrence relation-
ships of the input poses have been encoded with multiple
group parameters. The following layers of the network (i.e.
our Encoder) can automatically explore the global temporal
co-occurrence relationships according to the specific input
poses.

Decoder: the decoder aims to reconstruct the spatial and
temporal information of the future poses from the latent rep-
resentation 7" learned by the encoder, which can be formulated
as equation 4.

pi = w(T),

where N;, is the number of future poses, D; is the i-th future
pose, w(-) denotes the decoder.

i:1;29"'5N10 (4)
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As is shown in Fig. 2, our decoder mainly consists of two
convolutional layers. As the discussion above, the correlations
among joint trajectories of the same part are stronger than that
of different parts. Therefore, one 3 x 3 convolutional layer is
first applied to reconstruct the spatio-temporal information of
future poses. In this way, the coordinates of future poses can
be predicted with the dynamic features of local joints. Finally,
one convolutional layer with a 1 x 1 convolutional filter that
covers one joint trajectory along each axis is applied to further
recover the spatial details of future poses, smooth the trajectory
of future poses and also enhance the predictive performance.

IV. EXPERIMENTS

In this section, we first introduce the datasets used in
our experiments and implementation details of our work.
Then, we compare our method with state-of-the-arts. Next,
we carry out some experiments to analyze the contributions
of the proposed method. Next, we show the generalization
of our proposed method. Finally, we visualize the predictive
performance of our model.

A. Datasets and Implementation Details

Datasets: we use Human3.6M, CMU mocap dataset, 3D
Pose in the Wild dataset, G3D and FNTU datasets to evaluate
the performance of our model. (1) Human3.6M: Human3.6M
(H3.6M) [39] is a commonly used dataset for human motion
prediction. The dataset consists of 15 actions performed by 7
professional actors. (2) CMU mocap dataset (CMU-Mocap) 1,
CMU-Mocap dataset mainly includes five categories, naming
“human interaction”, “interaction with environment”, “loco-
motion”, “physical activities & sports” and ‘“situations &
scenarios”. We adopt the same training and testing sets for
evaluation. Finally, eight actions are selected for experiments,
including running, walking, and so on. (3) 3D Pose in the
Wild dataset (3DPW) [40]: 3DPW is a new dataset with
accurate 3D poses in the wild. The dataset consists of var-
ious activities such as shopping, doing sports, and hugging,
including 60 sequences and more than 51k frames. For a fair
comparison, we use the official split sets for experiments. (4)
G3D: G3D [41] is a gaming dataset collected with Microsoft
Kinect. The dataset consists of 20 actions performed by
10 subjects in a controlled indoor environment. Each people
performs several times and each sequence may contain multi-
ple actions. In experiments, we process this dataset following
the experimental setting in [9]. (5) FNTU: FNTU [9] is a
dataset collected from NTU RGB+D [42], i.e. each sequence
is clipped from the video in NTU RGB+D. The dataset
consists of 18102 sequences. Among them, 12001 sequences
for training, and the rest for testing. More details can be found
in [9].

Implementation Details: following the setting and process-
ing of [31], all experiments are carried out in 3D coordinate
space. In experiments, all models are implemented by Tensor-
Flow. The channels of convolutional layers in the trajectory
space transformation and encoder are set to 64, and the

1 http://mocap.cs.cmu.edu/
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TABLE I
SHORT-TERM PREDICTION ON H3.6M

Milliseconds Walking Eating Smoking Discussion

80 160 320 400 [ 80 160 320 400 [ 80 160 320 400 [ 80 160 320 400
Residual sup [11] 238 404 629 709 | 17.6 347 719 877 | 197 366 61.8 739 | 31.7 613 96.0 103.5
convSeq2Seq [16] 17.1 312 538 61.5 | 137 259 525 633 | 11.1 21.0 334 383 | 189 393 67.7 757
LearnTrajDep [31] 89 157 292 334 | 88 189 394 472 | 78 149 253 287 | 98 221 39.6 44.1
TrajectoryCNN (Ours) 82 149 300 354 | 85 184 37.0 448 | 63 128 23.7 278 | 7.5 200 413 478
Milliseconds Directions Greeting Phoning Posing

; ; 80 160 320 400 [ 80 160 320 400 [ 80 160 320 400 [ 80 160 320 400

Residual sup [11] 36.5 564 815 973 | 379 741 139.0 158.8] 25.6 444 740 842 | 279 547 131.3 160.8
convSeq2Seq [16] 22.0 372 59.6 734 | 245 462 900 103.1| 17.2 29.7 534 613 16.1 356 862 105.6
LearnTrajDep [31] 126 244 482 584 | 145 305 742 89.0 | 11.5 202 379 432 | 94 239 662 829
TrajectoryCNN (Ours) 9.7 223 502 61.7 | 12.6 281 67.3 80.1 | 10.7 188 37.0 431 | 69 21.3 629 788
Milliseconds Purchases Sitting Sitting Down Taking Photo

80 160 320 400 [ 80 160 320 400 [ 80 160 320 400 [ 80 160 320 400
Residual sup [11] 40.8 71.8 104.2 109.8| 345 69.9 1263 141.6| 28.6 553 101.6 1189 23.6 474 940 1127
convSeq2Seq [16] 294 549 822 93.0 | 198 424 77.0 884 | 17.1 349 663 777 | 140 272 538 662
LearnTrajDep [31] 19.6 385 644 722 | 107 246 506 620 | 114 27.6 564 67.6 | 6.8 152 382 49.6
TrajectoryCNN (Ours) 171 361 643 751 | 9.0 22.0 494 62.6 | 10.7 288 551 629 | 54 134 362 47.0

L Waiting Walking Dog Walking Together Average

Milliseconds 80 160 320 400 | 80 160 320 400 | 80 160 320 400 | 80 160 320 400
Residual sup [11] 29.5 60.5 119.9 140.6] 60.5 101.9 160.8 188.3| 23.5 450 71.3 82.8 [ 308 57.0 99.8 1155
convSeq2Seq [16] 179 365 749 90.7 | 40.6 747 116.6 138.7| 150 299 543 658 | 19.6 37.8 68.1 802
LearnTrajDep [31] 9.5 22.0 575 739 | 322 58.0 1022 122.7| 8.9 184 353 443 12.1 250 51.0 613
TrajectoryCNN (Ours) 82 210 534 689 | 23.6 520 981 1169| 85 185 339 434 | 102 232 493 59.7

channels of convolutional layers in decoder are set to 10 or 25
for short-term or long-term prediction, respectively (i.e. equal
to the number of future poses). Since the coordinate value can
be negative, positive, and zero, Leaky ReLU is selected as our
activation function. Following [31], we repeat the last frame
to align the future poses. To train our model, we use MPJPE
(Mean Per Joints Position Error) proposed in [39] as our loss
as is shown in equation 5. All models are trained with Adam
optimizer, and the learning rate is initialized to 0.0001. We use
MPIJPE [39] in millimeter on H3.6M, CMU-Mocap and 3DPW
as our metrics, and use MSE (Mean Squared Error) and MAE
(Mean Absolute Error) [9] in meter for per sequence on G3D
and FNTU.? All experimental settings are consistent with the
baselines.

1 N, N: 5
L= Ny 2t 2oy s = |

where N; is the number of joints, N, is the number of
future poses, Jy,; is the groundtruth one, and Jj, ; is the j-th
predictive joint at the n-th time-step.

(5)

B. Baselines

We compare our method with several recent works for
predicting human motion with 3D coordinate data, i.e Residual
sup [11], convSeq2Seq [16], LearnTrajDep [31], PredCNN’
[9], [10] and PISEP? [9]. (1) Residual sup [11] is an RNN
model for human motion prediction. (2) convSeq2Seq [16],
PredCNN’ [9], [10] and PISEP? [9] are three feedfor-
ward models built with CNN for human motiom prediction.
(3) LearnTrajDep [31] is built based on DCT and GCN,
and is currently the state-of-the-art model for human motion
prediction.

2Note the unit of the converted 3D coordinates data on H3.6M is millimeter,
and the unit of the skeletal data on G3D and FNTU is meter.

C. Comparison With Baselines

Results on H3.6M: Table I reports the short-term predic-
tion errors for 15 activities and their average performance.
Specifically, compared with the results of the RNN model [11]
and the CNN model [16], the errors of our method decrease
significantly, which demonstrates the effectiveness of our
proposed method. These possible reasons are two folds:
(1) according to the definition of pose space and trajectory
space in Section III-B, the trajectory space contains richer
trajectory information, and in the trajectory space, we can
conveniently capture the global temporal information and
dynamic local-global correlations among joint trajectories of
human motion. Moreover, the RNN model [11] and the
CNN model [16] capture the motion dynamics in the pose
space, while our method captures the motion dynamics in
the trajectory space. (2) The RNN model [11] can not
capture long-term temporal information and the correlations
among joint trajectories well. The CNN model [16] ignored
the global temporal co-occurrence modeling and failed to
model the dynamic local-global correlations among joint tra-
jectories. But our model captures motion dynamics of the
human motion sequence by simultaneously learning the cou-
pled spatio-temporal features, dynamic local-global features
and global temporal co-occurrence features, considering the
correlations among joint trajectories and the temporal cues
among the input poses carefully. Therefore, our model can
better capture the motion dynamic law. Compared with [31],
our model achieves the lowest errors at all time-steps on
average. Although LearnTrajDep [31] also captures motion
dynamics in the trajectory space, compared with LearnTra-
jDep [31], our model has two major advantages. (1) Our
model achieves trajectory space transformation, captures the
motion dynamics, and predicts future poses end to end, while
LearnTrajDep [31] captures the motion dynamics and predicts
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TABLE II
LONG-TERM PREDICTION OVER 15 ACTIVITIES ON H3.6M. THE 3D ERRORS FOR 4 ACTIVITIES OF “RESIDUAL SUP” [11]
AND “CONVSEQ2SEQ” [16] MODELS ARE PROVIDED IN [31], AND THE RESULTS OF “LEARNTRAJIDEP” [31]
FOR ALL ACTIVITIES IS REPRODUCED USING THE AVAILABLE PRE-TRAINED MODEL
Millis ds Walking Eating Smoking Discussion Directions Greeting Phoning Posing
tseconds 560 1000 | 560 1000 | 560 1000 | 560 1000 | 560 1000 | 560 1000 | 560 _ 1000 560 1000
Residual sup [11] 73.8 86.7 | 101.3 119.7] 85.0 118.5 120.7 147.6 - - - - - - - -
convSeq2Seq [16] 592 713 | 66.5 854 | 42.0 679 84.1 116.9 - - - - - - - -
LearnTrajDep [31] 422 513 | 56.5 68.6 | 32.3 60.5 704 103.5 85.8 109.3| 91.8 874 65.0 113.6 113.4 220.6
TrajectoryCNN (Ours) 379 464 | 592 715 | 327 58.7 75.4 103.0 84.7 104.2| 914 843 62.3 1135 111.6 210.9
Milliseconds Purchases Sitting Sitting Down  Taking Photo Waiting Walking Dog ~ Walking Together Average
. 560 1000 [ 560 1000 [ 560 1000 560 1000 560 1000 [ 560 1000 560 1000 560 1000
Residual sup [11] - - - - - - - - - - - - - - - -
convSeq2Seq [16] - - - - - - - - - - - - - - - -
LearnTrajDep [31] 943 130.4| 79.6 114.9| 82.6 140.1 68.9 87.1 100.9 167.6| 136.6 174.3 57.0 850 78.5 114.3
TrajectoryCNN (Ours) 84.5 115.,5| 81.0 116.3| 79.8 123.8 73.0 86.6 929 165.9| 141.1 181.3 576 713 77.7 110.6
TABLE III

SHORT AND LONG-TERM PREDICTION ON CMU-MOCAP

Milliseconds Basketball Basketball Signal Directing Traffic

S0 160 320 400 1000 80 160 320 400 1000 | 80 160 320 400 1000
LearnTrajDep [31] 140 254 496 614 1061] 35 61 117 152 539 | 74 151 317 422 1524
TrajectoryCNN (Ours) 111 19.7 439 568 114.1| 1.8 3.5 91 13.0 496 | 55 109 237 313 1059
e Jumping Running Soccer
Milliseconds 80 160 320 400 1000 80 160 320 400 1000 | 80 160 320 400 1000
LearnTrajDep [31] 160 344 763 968 164.6] 255 36,7 393 399 582 | 113 215 442 558 1175
TrajectoryCNN (Ours)  12.2 28.8 721 94.6 166.0| 17.1 244 284 328 492 | 81 17.6 409 513 1265
Milliseconds Walking Washwindow Average

S0 160 320 400 1000 80 160 320 400 1000 | 80 160 320 400 1000
LearnTrajDep [31] 77 118 194 231 402 | 59 119 303 40.0 793 | 115 204 378 468 965
TrajectoryCNN (Ours) 6.5 103 194 237 416 | 45 97 299 41.5 899 | 83 156 334 431 928

future poses separately and relies on manual features. There-
fore, our model is more flexible in capturing motion dynamics
and predicting future poses that lead to superior performance.
(2) Our model can capture the global temporal co-occurrence
features of the input poses by learning free parameters for
each pose, while LearnTrajDep [31] can not since there is no
parameters that can be learned for each pose using DCT. Based
on the two advantages above, our model achieves the best
performance, showing the effectiveness of our model again.

For long-term prediction, as is shown in Table II, compared
with all the baselines, our model achieves the best perfor-
mance on average for both 560ms and 1000ms, especially
in 1000ms, which further verifies the effectiveness of our
proposed method. The most important reason is that our model
can simultaneously capture the global temporal co-occurrence
features and coupled spatio-temporal features of previous
poses, while other methods can not.

Results on CMU-Mocap: Table III reports the 3D errors for
short-term and long-term prediction on CMU-Mocap. Taking
the action “Directing Traffic” as an example, the errors of
our method decrease significantly in all cases, especially in
the case of 1000ms. In general, our method outperforms all
baselines by a large margin for both short-term and long-term
prediction, demonstrating the effectiveness of our proposed
method powerfully.

Results on 3DPW: Table IV reports the 3D errors for
short-term and long-term prediction on 3DPW. For a more
difficult dataset such as the dataset in the wild (i.e. 3DPW),

compared with all baselines, the errors of our method decrease
at all time-steps by a larger margin for both short-term and
long-term prediction, showing the effectiveness of our method
powerfully. The main reasons are: (1) Residual sup [11] can
not model the spatial correlations and long-term temporal
features well using GRUs. (2) convSeq2Seq [16] can not
capture the spatial features of the human body well using
a large convolutional filter, and they also failed to capture
the global temporal co-occurrence features since the temporal
dimension is not specified as the channel of the input tensor
and their convolutional model can not learn the free parameters
for each pose. (3) LearnTrajDep [31] can not capture the global
temporal co-occurrence features of the input poses since there
are no parameters needed to be learned using DCT. Moreover,
their model is not built end to end and thus is not flexible
enough in capturing motion dynamics for predicting future
poses. Differently, we achieve trajectory space transformation,
capture motion dynamics, and predict future poses end to
end. In addition, our method captures the motion dynamics
with coupled spatio-temporal features, dynamic local-global
features, and global temporal co-occurrence features simulta-
neously, considering the spatio-temporal features of the input
sequence carefully. Therefore, we can achieve better results.
Results on G3D: the results on G3D are reported in Table V.
Our method achieves state-of-the-art performance, demonstrat-
ing the effectiveness of our proposed method again. Compared
with PredCNN’ [9], [10] and PISEP? [9], the errors of our
method decrease significantly. The possible reasons are two
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TABLE IV
SHORT AND LONG-TERM PREDICTION ON 3DPW

Milliseconds 200 400 600 800 1000

Residual sup [11] 1139 173.1 1919 201.1 210.7

convSeq2Seq [16] 71.6 1249 1554 1747 1875

LearnTrajDep [31] 356 67.8 90.6 1069 117.8

TrajectoryCNN (Ours)  30.0 59.7 853 99.0 107.7
TABLE V

HUMAN MOTION PREDICTION ON G3D AND FNTU

Model G3D FNTU
MSE MAE MSE MAE
PredCNN" [10], [9] 0.1882  1.5713 | 0.1665 1.6394
PISEP? [9] 0.1199  1.1101 | 0.1210  1.1651
LearnTrajDep [31] 0.1013  0.9068 | 0.1696  1.2280
TrajectoryCNN (Ours) ~ 0.0937  0.8663 | 0.1055 1.0114

folds: (1) our model considers the spatio-temporal structure
carefully by capturing the coupled spatial-temporal features
from both the spatial and temporal dimensions. PredCNN’
and PISEP? separately modeled the spatial and temporal
information of previous poses, ignoring the correlations among
the spatial and temporal dimensions. Therefore, these models
break the natural state of human motion and thus can not
capture the motion dynamics well. (2) We specify the temporal
dimension as the channel of the input tensor in our CNN
model. Therefore, we can easily learn free parameters for
each pose to capture the global temporal co-occurrence rela-
tionships of all input poses. PredCNN’ [9], [10] and PISEP?
[9] modeled multiple temporal scale information hierarchically
and the poses in each temporal scale shared the same weights,
making it difficult to learn free parameters for each pose
and thus can not capture the global temporal co-occurrence
features of all input poses. Compared with [31], our method
achieves the best results at both MSE and MAE, showing the
effectiveness of our method in modeling motion dynamics and
predicting human motion end to end.

Results on FNTU: the results on FNTU are reported
in Table V. Similarly, our conclusion remains unchanged. Our
method outperforms all baselines by a large margin, showing
the effectiveness again.

Discussion: as is shown in Table I~Table V, compared
to the results on H3.6M and CMU-Mocap, the performance
gaps between the baseline [31] and our method on 3DPW,
G3D, and FNTU are enlarged. The reasons can be analyzed
for these two perspectives. (1) From the perspective of
the dataset, the prediction of human motion on 3DPW,
G3D, and FNTU is more difficult than that on H3.6M, and
CMU-Mocap. The reasons are as follows: the used datasets
in this paper can be roughly divided into two categories:
body-centered coordinate data (i.e. H3.6M, CMU-Mocap, and
3DPW) and camera-centered coordinate data (i.e. G3D and
FNTU). a) Body-centered coordinate data (i.e. H3.6M, CMU-
Mocap, and 3DPW): for these datasets, the center of the
3D coordinate system is located in the center of the human
body, and the 3D coordinate data excludes the global rotations
and translations of the humans. Moreover, 3DPW is a newly
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released dataset collected in challenging outdoor scenes with a
moving camera, including walking in the city, going up-stairs,
having coffee or taking the bus. Therefore, the prediction
of human motion on 3DPW is more challenging than that
on H3.6M and CMU-Mocap. b) Camera-centered coordinate
data (i.e. G3D and FNTU): for these datasets, the center
of the 3D coordinate system is located in the center of the
camera, and the coordinate data contains the global rotations
and translations of the humans. Moreover, due to the various
distances or views of the placement of the camera, the problem
of predicting human motion is very challenging. Because
the coordinate value of distant joints is greater than that of
near joints. When the center of the 3D coordinate system
is located on the camera, it will lead to various physical
structural characteristics of the human body even for the same
people. Therefore, the predictive task on these datasets is very
challenging. (2) From the perspective of the method, our
method can better capture motion dynamics to describing the
complex human motion. Compared with the baseline [31],
our method achieves improved performance especially on
the more challenging datasets such as 3DPW (the result is
shown in Table IV), G3D and FNTU (the results are shown
in Table V), which benefits from the two advantages of our
method: i) our model is built end to end, and thus is flexible
in capturing motion dynamics and predicting future poses,
while [31] is not built end to end and relies on manual features
(i.e. Using DCT to capture the temporal dependencies of the
input poses); ii) our model can capture the global temporal
co-occurrence relationships of the input poses by learning free
parameters for each pose, while the baseline [31] can not since
there is no parameters can be learned for each pose using DCT.

D. Ablation Analysis

In this section, we verify our network from coupled
spatio-temporal modeling, global temporal co-occurrence
modeling, and dynamic local-global modeling.

Evaluation of Coupled Spatio-Temporal Modeling (C-ST):
we prevent the network capturing the coupled spatio-temporal
features by modifying the filter size of the whole network
to verify the importance of this. We consider these two
experiments: (1) the filter size is set to 1 x 1: in this
case, the filter covers one joint trajectory along one axis
(w/o C-ST(@#1)); (2) the filter size is set to 1 x 3: in this case,
the filter covers one joint trajectory (w/o C-ST(#2)). Although
there is weight shared mechanism in the convolutional neural
network, it is hard to capture the strong correlations among
joint trajectories of the same limb. In a word, the network
mainly focuses on modeling the temporal information, while
ignores the spatial modeling.

As is shown in Table VI, compared with the results of
“w/o C-ST(#1)” and “w/o C-ST(#2)”, the errors of our pro-
posed “TrajectoryCNN” decrease significantly on five datasets,
proving that simultaneously modeling the spatial and temporal
features is critical for the network performance. For example,
“TrajectoryCNN” on H3.6M achieves lower errors at all
timestamps, especially for the later predictions. The possible
reason is: at the early timestamps, the spatial features of future
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TABLE VI

EVALUATION OF COUPLED SPATIO-TEMPORAL MODELING. HERE,
W/0 C-ST(#1) DENOTES THE FIRST EXPERIMENT,AND W/0 C-ST(#2)
DENOTES THE SECOND EXPERIMENT. THE ERRORS
ON H3.6M, CMU-MOCAP AND 3DPW DATASETS
ARE AVERAGED OVER ALL ACTIVITIES

TABLE VII

EVALUATION OF GLOBAL TEMPORAL CO-OCCURRENCE MODELING.
HERE, “W/0 GTC” DENOTES “WITHOUT GLOBAL TEMPORAL
C0O-OCCURRENCE MODELING”. THE AVERAGES ERRORS ON
THREE DATASETS ARE AVERAGED OVER ALL ACTIVITIES

Model MPJPE on H3.6M
80ms  160ms 320ms 400ms  average
wlo GTC 12.0 25.5 51.1 60.7 37.3
TrajectoryCNN  10.2 23.2 49.3 59.7 35.6

MPIJPE on CMU-Mocap

Model MPIPE on H3.6M
80ms 160ms 320ms 400ms
wio C-ST(#1) 24 31.0 67.6 31.6
wlo C-ST(#2) 11.8 27.5 58.1 69.4
TrajectoryCNN___ 10.2 232 493 59.7 Model

80ms 160ms 320ms 400ms  average
Model MPIPE on CMU-Mocap w/o GTC 10.6 16.8 32.8 41.8 25.5
80ms 160ms  320ms  400ms TrajectoryCNN 8.3 15.6 334 43.1 25.1
w/o C-ST(#1) 9.7 20.9 49.0 65.1 MPJPE on 3DPW
wlo C-ST(#2) 9.4 18.4 39.0 50.5 Model S00ms 200ms average
TrajectoryCNN 8.3 15.6 334 43.1 wio GTC 34.0 63.9 9.0
Model MPJPE on 3DPW TrajectoryCNN 30.0 59.7 44.9
200ms 400ms
w/o C-ST(#1) 36.8 74.5
w/o C-ST(#2) 34.2 69.0 ! e e U n-B
TrajectoryCNN 30.0 59.7 ] é é : Z 3 = Z 2 2 Z 22 Z 3 =
Zz| 8 SIS [SHE-20-3 o Z| & Sz &
Model e ——— L 235 |2[3|8 [213(8 |23|5| |38
w/o C-ST(#1) 0.1542  1.0681 0.1566  1.2057
w/o C-ST(#2)  0.1300  1.0032  0.1488  1.2052 Fig. 5. Remove residual connections in the trajectory block.
TrajectoryCNN  0.0937  0.8663  0.1055 1.0114

poses are similar to the later observed poses, but at the later
timestamps, the spatial features of future poses may vary
greatly. Therefore, ignoring spatial modeling may have much
more effect on the later predictions. “w/o C-ST(#1)” and “w/o
C-ST(#2)” can not model spatial information well, which may
lead to the worse performance at the later timestamps.

Evaluation of Global Temporal Co-Occurrence Model-
ing (GTC): to show the effectiveness of global temporal
co-occurrence information, we reorganize the input tensor
(frames are set as width, joints are set as height, and coor-
dinates (e.g. x, y and z) are set as depth) as done by prior
literature [43]-[45]. In this case, the filter covers local spatial
and local temporal information. Because of the local weight
shared mechanism of convolutional networks, it is difficult to
learn free parameters for each pose. In this case, the network
can not model the global temporal co-occurrence relationships
of all input poses.

Experimental results are reported in Table VII. Compared
with “w/o GTC”, in general, the errors of “TrajectoryCNN”
decrease on three datasets, especially on the more challeng-
ing datasets such as H3.6M and 3DPW datasets, showing
the effectiveness of global temporal co-occurrence model-
ing. The possible reason is: for a more challenging dataset,
human motion is more complex, modeling the global temporal
co-occurrence relationships of the input poses can better
capture motion dynamics for predicting human motion. As
is shown in Table VII, although the overall improvement
on CMU-Mocap dataset is limited, the improvement for the
short-term prediction can not be ignored. This further shows
the effectiveness of global temporal co-occurrence model-
ing. To sum up, we can conclude that the global temporal
co-occurrence modeling can improve the final performance of
the network, especially on a more challenging dataset.

TABLE VIII

EVALUATION OF DYNAMIC LOCAL-GLOBAL MODELING. HERE,
F; DENOTES THE i-TH PREDICTIVE POSE, “W/0 DLG” DENOTES
“WITHOUT DYNAMIC LOCAL-GLOBAL MODELING”. THE ERRORS
ON H3.6M, CMU-MOCAP AND 3DPW DATASETS
ARE AVERAGED OVER ALL ACTIVITIES

MPJPE on H3.6M

Model 30ms T60ms 320ms 400ms
w/o DLG 35.7 37.2 65.8 79.8
TrajectoryCNN 10.2 23.2 49.3 59.7
MPIJPE on CMU-Mocap
Model 30ms 160ms 320ms 400ms
w/o DLG 443 36.1 54.9 69.8
TrajectoryCNN 8.3 15.6 334 43.1
MPIJPE on 3DPW
Model 200ms 400ms
w/o DLG 54.3 78.6
TrajectoryCNN 30.0 59.7
MSE on ENTU
Model F> Fy Fg Fio average
w/o DLG 0.1671 0.1412 03373 0.3636  0.2523
TrajectoryCNN 0.0365 0.0673 0.1524 0.2101  0.1166
MAE on FNTU
Model Fy Fy Fgs Fio average
w/o DLG 1.5053 1.6507 22590 2.4883 19758
TrajectoryCNN 0.5350 0.8160 1.3389 1.5943 1.0711

Evaluation of Dynamic Local-Global Modeling (DLG): to
verify the effectiveness of dynamic local-global modeling,
as is shown in Fig. 5, we remove all residual connections
in the trajectory block. Without the residual connections in
the trajectory block, fine-grained features (including dynamic
local features) from the lower layers can not be fused with the
coarse-grained features (including dynamic global features)
from the higher layers. In this case, the network is difficult to
capture the dynamic local-global features well. Experimental
results are shown in Table VIII. Compared with “w/o DLG”,
the errors of “TrajectoryCNN” significantly decrease on all
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TABLE IX

EVALUATION OF GENERALIZATION. IN THE EXPERIMENT, WE TRAIN ON
FNTU DATASET AND DIRECTLY TEST ON G3D DATASET, WHICH IS
CONSISTENT WITH THE BASELINES [9], [10], [31]

Methods MSE MAE
PredCNN" [10], [9] 02432 2.1706
PISEP2 [9] 0.1446  1.2713
LearnTrajDep [31] 0.1353 1.0409
TrajectoryCNN (Ours)  0.1179  0.9353

datasets, which demonstrates the effectiveness of dynamic
local-global modeling.

E. Evaluation of Generalization

Considering the differences of these datasets, we decide to
verify the generalization performance of the proposed network
on G3D and FNTU. For this, we pre-train our model on
FNTU and directly test on G3D. As is shown in Table IX,
our method achieves the best performance on unseen data.
Specifically, compared with [31], the MSE and MAE of our
network decrease by 0.0174 and 0.1056, respectively. The
possible reason is that our model considers modeling motion
dynamics and predicting future poses end to end, which may
lead to better generalization of our proposed model to novel
actions.

F. Qualitative Analysis

To show the qualitative performance of our proposed net-
work, we also visualize the predictive results frame-by-frame
on H3.6M, G3D, and FNTU.3 Fig. 6 and Fig. 7 show the
predictive results for short-term and long-term prediction on
H3.6M, respectively. Our method achieves the best visualized
performance for both short-term and long-term predictions
on H3.6M. As is denoted in Fig. 6, for the left hand of
the poses in both Fig. 6(a) and Fig. 6(b), and the right
hand of the poses in Fig. 6(c), the performance of our
method is better than the baseline. As is denoted in Fig. 7,
the right hand of predicted poses of our proposed method is
closer to the groundtruth. This may benefit from two folds:
(1) we model the motion dynamics of the input sequence by
simultaneously extracting the dynamic local-global features,
the coupled spatio-temporal features, and the global temporal
co-occurrence features; (2) our proposed network can achieve
trajectory space transformation, capture motion dynamics, and
predict human motion end to end, while the baseline can not.
Therefore, our method is more flexible in capturing motion
dynamics, and thus we can achieve better results.

Fig. 8 and Fig. 9 show the visualization performance on
G3D and FNTU, respectively, and our method achieves the
best performance on both datasets. As is denoted in Fig. 8§,
compared with [31], two hands in Fig. 8(a) and the left leg
in Fig. 8(b) are the closest to the groundtruth. As is shown
in Fig. 9, for the right hand in Fig. 9(a) and the upper
body in Fig. 9(b), the results of our method are significantly

3Because there are not available pre-trained models on CMU-Mocap and
3DPW datasets, we only provide the qualitative results on H3.6M, G3D, and
FNTU.
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Fig. 6. Visualization of frame-wise performance for short-term prediction
on H3.6M. For each group poses, from top to bottom, we show the results of
LearnTrajDep [31] and the results of our proposed method, where the black
poses denote the groundtruth, the blue poses and the red poses denote the
predictive poses.

better than [31], which demonstrates the effectiveness of our
proposed method again.

More visualization results are reported in Fig. 10 and Fig. 11
to show the advantages of our proposed model in capturing
motion dynamics.

1) Global Temporal Co-Occurrence Modeling: as is dis-
cussed in Section III-C, the global temporal co-occurrence
relationships are encoded during the trajectory space transfor-
mation, and therefore we visualize the convolutional kernels
of this convolutional layer to intuitively show the modeling,
and the results are shown in Fig. 10. Here, the horizontal
axis denotes the frames across the temporal dimension, and
the vertical axis denotes the weights of convolutional kernels.
Taking “kernel-1" as an example, this kernel covers the whole
temporal axis of the input sequence and each frame has its
free weights. Therefore, with the free weights for each frame,
we can conveniently model the different importance of differ-
ent frames for capturing the motion dynamics to better predict
the future poses. To sum up, the kernel encodes the global
temporal co-occurrence relationships of the input frames.
Since different kernels pay different attention to different
frames, we think that different convolutional kernels encode
different global temporal co-occurrence relationships. As is
shown in Fig. 2, under the modeling of the following layers,
the network can automatically learn different global temporal
co-occurrence relationships for different input sequences.

2) Dynamic Local-Global Modeling With Residual Connec-
tions: we visualize the intermediate features maps of each
trajectory block in our encoder to show how the residual
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Fig. 7.

Visualization of frame-wise performance for long-term prediction on H3.6M. For each group poses, from top to bottom, we show the results of

LearnTrajDep [31] and the results of our proposed method, where the black poses denote the groundtruth, the blue poses and the red poses denote the

predictive poses.

Fig. 8. Visualization of frame-wise performance on G3D. For each group
poses, from top to bottom, we show the results of PredCNN [9], [10],
the results of PISEP? [9], the results of LearnTrajDep [31] and the results of
our proposed method, where the black poses denote the groundtruth, the blue
poses and the red poses denote the predictive poses.

connections help enhance the coarse-grained features with the
point-level features from lower layers, and the results are
shown in Fig. 11. Taking the motion sequence in Fig. 11(a)
as an example, the movement of the human body mainly
occurs in the joints of the right hand, left leg, and right
leg. Comparing the visualization results of each trajectory
block between Fig. 11(b) and Fig. 11(c), we can see that
the response of the moving joints in Fig. 11(c) is larger than
that in Fig. 11(b). The possible reason is that: the residual
connections in the trajectory block can help enhance the
coarse-grained features with the fine-grained features, enabling
the network to capture the moving joints of human movement.

RRRRRRDPPOPEPPER PP
RRRARDDDPPPPEPETRPPE
RRRARDDDPPPPRPETRPPE
RRRRRRDDPMPPREETELPE

brppepesppopnappedae
PPPfpeddrippppppaanaaa
brppepuoppepnpaanaagd
brppepenppepnpppneanee

(b)

Fig. 9. Visualization of frame-wise performance on FNTU. For each group
poses, from top to bottom, we show the results of PredCNN [9], [10],
the results of PISEP? [9], the results of LearnTrajDep [31] and the results of
our proposed method, where the black poses denote the groundtruth, the blue
poses and the red poses denote the predictive poses.

0.4r

—kernel 1
03l — kernel -2
— kernel -3

—kernel-4
—kernel-5

Weights

Frames

Fig. 10. Visualization of convolutional kernels on H3.6M. Different colors
denotes different kernels.

Therefore, we can better capture the dynamic local-global
features of human motion using the residual connections in
the trajectory block.
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(a) Human motion sequence (smoking)
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(c) With residual connections in the trajectory block
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Fig. 11.  Visualization of feature maps on H3.6M. Fig. 11(a) shows the
human motion sequence corresponding to Fig. 11(b) and Fig. 11(c). For
Fig. 11(b) and Fig. 11(c), the height is concatenated by the output feature
maps of trajectory blocks, and the width is concatenated by different channels
of output feature maps. From top to bottom of each trajectory block, as is
shown in Fig. 3, we show the joints of the right arm, left arm, trunk, right
leg, and left leg. Taking the feature map denoted in Fig. 11(c) at channel-1 of
the trajectory block4 as an example, we show the joint annotations of feature
maps in Fig. 11(d).

V. CONCLUSION

In this work, we propose an effective end-to-end
spatio-temporal feature learning network, TrajectoryCNN,
to capture the motion dynamics of the previous human motion
sequence in the trajectory space and predict future human
motion sequence in a non-recursive manner. A major differ-
ence between our method and other existing methods is that
our model mainly captures the motion dynamics of input pose
sequence in the trajectory space while other methods model
their motion dynamics in the pose space or in the frequency
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domain. More importantly, our new proposed network can
simultaneously capture the coupled spatio-temporal informa-
tion and global temporal co-occurrence dependencies of pre-
vious poses, moreover, it can model the different correlations
among joint trajectories of different parts. Evaluations are car-
ried out on five benchmark datasets, and our method achieves
state-of-the-art performance on all datasets. Experiments also
show that simultaneously modeling the spatial and temporal
information is critical to the final performance of the network,
and the global temporal co-occurrence modeling can further
improve the performance of the final network, especially on a
more challenging dataset.
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