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Abstract— Action repetition counting is to estimate the occur-
rence times of the repetitive motion in one action, which is a
relatively new, significant, but challenging problem. To solve this
problem, we propose a new method superior to the traditional
ways in two aspects, without preprocessing and applicable for
arbitrary periodicity actions. Without preprocessing, the pro-
posed model makes our scheme convenient for real applications;
processing the arbitrary periodicity action makes our model more
suitable for the actual circumstance. In terms of methodology,
firstly, we extract action features using ConvNets and then
use Principal Component Analysis algorithm to generate the
intuitive periodic information from the chaotic high-dimensional
features; secondly, we propose an energy-based adaptive feature
mode selection scheme to adaptively select proper deep feature
mode according to the background of the video; thirdly,we
construct the periodic waveform of the action based on the high-
energy rules by filtering the irrelevant information. Finally, we
detect the peaks to obtain the times of the action repetition.
Our work features two-fold: 1) We give a significant insight
that features extracted by ConvNets for action recognition
can well model the self-similarity periodicity of the repetitive
action. 2) A high-energy based periodicity mining rule using
features from ConvNets is presented, which can process arbitrary
actions without preprocessing. Experimental results show that
our method achieves superior or comparable performance on the
three benchmark datasets, i.e. YT_Segments, QUVA, and RARV.

Index Terms— Action repetition counting, deep ConvNets.

I. INTRODUCTION

‘ J ISUAL action repetition in real life appears in many
applications, such as sports, music playing and manu-
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facturing assembly. It is important to count the repetition of a
specific motion in videos, which is of great application value
in video question answering [1], action classification [2]-[4],
segmentation [5]-[7], 3D reconstruction [8], [9], motion track-
ing [10] and motion planning of robots [11]. Due to the
diversity of motion patterns and the limitations in video
capturing (e.g., camera movement), the development of a
universal solution for counting the repetitive actions remains
under-explored.

To count the action repetition, early methods usually
assumed that repetitive motions occurred in fixed scenes
with regular periodicity. With this assumption, they usually
used traditional features to analyze the action repetition,
including human skeleton obtained by sensor device [8], [9],
the wavelength spectrum [12]. However, the actions to be
counted are usually captured in complex dynamic scenes
and have variable periodicity over different periods, making
the traditional features not suitable for the counting tasks.
To tackle this complexity involved in real circumstances,
two methods have been proposed in recent years. In [13],
multiple repetitive motion modes are simulated to construct
the periodicity of the repetitive actions to realize the counting.
Because the simulated motion modes are fixed, the algorithm
can handle the specified modes well. But the performance
significantly decreases for actions with other repetitive modes
[14]. In [14], a counting method based on the detection of the
moving area is proposed to achieve improved performance.
However, this method relies on additional preprocessing steps
to detect the moving region. To sum up, the method based
on the simulated action modes is ineffective to count the
varied types of repetitive motions [13], and the scheme
based on detecting moving regions is highly dependent on
the preprocessing performance [14]. These problems motivate
us to find an action repetition counting scheme that can
work for various motion modes without relying on extra
detection steps.

There are many challenges in action repetition counting for
unconstrained videos, which can be summarized as follows.
(1) Background noise & view changes & irrelevant motion.
In the unconstrained videos, besides the information of inter-
ested repetitive action, there exists other information such as
changes in the background, the changing viewpoint of moving
cameras, actions of the false objects and other unrelated
movements. How to distinguish the periodic actions from these
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(b) Row splash

Fig. 1. The illustration of coupled motion. Here, “t = %’ denotes the “x”-th
frame of the video. In Fig. 1(a), the movement directions of the upper body
are different than that of the feet of the girl; in Fig. 1(b), the motion from
frames 1 to 5 is very similar to that of frames 6 to 10 in the same action.

various irrelevant signals is key to counting the repetitive
action. (2) Various action repetition modes. Action repetition
modes are very different in different actions. For example,
the repetition mode can be rotation, swinging, translation, and
other modes. How to discover the relationship between the
periodicity and various repetition modes is another challenge.
(3) Huge intra-class differences & coupled motion. In terms
of intra-class differences, the amplitude and the frequency of
the repetition within the same action can also be different; in
terms of coupled motion, it is very easy to double-counting the
number of action repetition and result in additional counting
errors. As shown in Fig. 1, taking the action “Row splash”
as an example, the sub-motions in the same complex action
are similar; for the action “Runaround”, different parts of
the human body move with different frequencies so that the
counting results tend to summarize the repetitive times of
different parts. Therefore, even for the same action, how
to design a scheme that is robust to the huge intra-class
differences and coupled motion is an additional challenge.

Due to the above challenges, the research progress on rep-
etition counting is relatively slow in recent years. In contrast,
the development of action recognition using deep learning
methods has achieved far advances [15], [16], [28], [30]-[32],
which opens up new possibilities to propose new solutions for
repetition counting. Deep ConvNets can capture versatile and
robust action features for action recognition, which illustrates
that the features from ConvNets contain rich information
on the action. For repetition counting, there is an important
clue that the self-similarity periodic dynamics are the key.
Accordingly, we propose in this paper that the deep features
are helpful for mining the self-similarity periodicity of the
action and can be used to count the repetition. This insight
relieves us from the preprocessing and helps in addressing the
challenges of modelling the periodicity of the unconstrained
videos.

On the one hand, the deep features contain the periodic
rules and other irrelevant information for repetition count-
ing, such as motion features for representing human motion.
On the other hand, it is hard to mine the self-similarity

4813

amea

o 200 400 Time 600 800 1000

Fig. 2. An illustration of the signal trend. The overall amplitude of the signal
changes with the variation of the background. We can describe this change
using the signal represented by the red curve, and we name it as the signal
trend.

action periodicity in a high-dimension feature space. To better
mine the repetitive rules from the deep features, we use
Principal Component Analysis (PCA) to extract the most
significant component of the deep features, and then, we pro-
pose an energy-based action periodicity mining scheme that
describes below to suppress the effect of irrelevant infor-
mation for counting. Moreover, we empirically found that
the non-stationary repetitive signals frequently appear in the
first-dimensional principal component. This discovery is an
important insight for modelling the action repetition. Using
PCA, we convert the high-dimension deep features to a one-
dimension waveform. In a word, deep features combining with
PCA can generate the periodic signal.

Moreover, as shown in Fig. 2, we empirically show that
the background noise and view changes are often reflected
as the changing amplitude of the DC component in the
one-dimensional waveform of the video in the time domain.
Because this DC component reflects the trend of the time
signals, we name the DC component as the signal trend. To
overcome the effect of background noise and view changes,
it is important to remove these DC components from the
one-dimensional waveform of actions for counting repetition.
In this paper, polynomial regression is applied to simulate
these time-varying DC components and the signal trend can
be removed based on the simulated signal.

For the coupled motion, it is sure that there is some rela-
tionship between the action and its sub-actions. In this paper,
we convert the action into a signal, and then, we use Power
Spectral Density (PSD) of the signal to mine the relationship
of the action and its sub-actions, to detect the coupled and
hence eliminate the irrelevant signal of its sub-actions.

For the video including the repetitive action, most of the
energy of the video usually comes from the repetitive motions
due to the repetition. From this perspective, once we obtain
the waveform that contains the periodic motions, we can locate
the periodic motion using the high energy rules. In this paper,
frequency analysis is used to locate the signals with the high
energy corresponding to the repetitive action automatically,
and then we can finish counting based on the located signal.

As discussed above, a new action repetition counting
method is proposed to solve the unconstrained action repetition
counting in videos, and main contributions are summarized
as follows. (1) We propose an energy-based action repetition
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counting method without extra preprocessing, which can
be used to effectively count the repetition of the action
with arbitrary periodic motions and arbitrary viewpoints for
unconstrained videos. (2) We give an important insight that
the periodic self-similarity movement information can be
well modelled by the deep features of the action used in
action recognition. Specifically, we use the typical two-stream
framework pre-trained on the task of action recognition to
extract different types of deep features of the videos with
the repetitive actions, and moreover, we provide an adaptive
feature mode selection method to automatically select different
feature modes for the videos with different backgrounds.
(3) We propose a novel high-energy-based action periodic-
ity reconstruction scheme to reconstruct the robust periodic
waveform of the video with the repetitive action. On the one
hand, the proposed scheme is robust to the noises by filtering
the low-energy of the unrelated motion in the power spectrum
of the video; on the other hand, the proposed scheme can
adapt to arbitrary complex actions by automatically detecting
the coupled and further removing the noise caused by its sub-
actions, which can significantly improve the performance of
repetition counting.

The remainder of the paper is organized as follows. The
next section investigates the related work. Section 3 discusses
our algorithm in detail. The datasets, evaluation criteria,
experimental results and analysis are given in Section 4.
We conclude our paper in Section 5.

II. RELATED WORK

Action repetition counting is usually realized by converting
the video into a one-dimensional waveform with the repetitive
motion structures [8], [9] and then analyzing the spectral
or frequency component by Fourier transform or wavelet
analysis. Waveform analysis is also widely used in the periodic
movement analysis [17], [18], [33], which is very related to
the repetition counting. At the same time, as discussed in the
Introduction, the action feature is another important problem
for counting. Therefore, we will review the related work from
the following two aspects: periodic movement analysis and
deep features for action analysis.

A. Periodic Movement Analysis

The existing methods have achieved remarkable results in
video action periodic analysis tasks. Burghouts et al. [12]
proposed a spatiotemporal filter bank for online estimation
of action repetition. But it was limited to the motion of
stationary scenes, and the filter bank was manually adjusted.
Laptev et al. [19] used a matching method for action count-
ing, whose primary work is to detect and segment repeti-
tive motions using the geometrical constraints generated by
the same motion repeatedly when the viewpoint changes.
Ormoneit et al. [10] used functional analysis to represent
cyclic movement. Ribnick et al. [8], [20] found that it is
possible to reconstruct accurately periodic movements in 3D
from a single camera view. Based on this research, they applied
3D reconstruction to gait recognition. Ren ef al. [21] and
Li et al. [22] developed two autocorrelation counting systems
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based on matching visual descriptors. Although both systems
completed the repetition counting, they are postprocessing
methods, which are only applicable to specific domains of
restricted video. Pogalin er al. [17] got the information of a
certain part of the body by tracking the interesting object, then
performed PCA and spectral analysis followed by detection
and frequency measurement. But its purpose is to estimate
the degree of periodic motion but not to count the repetition.
Based on the human skeleton points captured by Kinect,
Wang et al. [7] proposed an unsupervised repetitive motion
segmentation algorithm based on the frequency analysis of the
motion parameter, zero-velocity cross detection and adaptive
k-means clustering. Although the above methods lay the
foundation for the video repetitive counting task, they only
realized the simple repetitive motion estimation of a fixed
scene and had a poor performance on the diversity and non-
stationary motion, which commonly exists in real applications.

In recent years, Kumdee et al. [3] used the image self-
similarity measure as the input of the multi-layer percep-
tron neural network to determine whether the input video
is a repetitive action. This method is relatively stable to
image changes, noise, and low-resolution images. However,
they focused on classifying that the video is a repetitive
video or not but not counting. Levy et al. [13] proposed
a method to count the repetitive action of the videos using
the convolutional neural network. They used synthetic data
to simulate four motion types for the periodic motion and
carried out network training and prediction. In the test, the
region of interest was calculated through the motion threshold
for the test data. The motion cycle was classified through the
classification network to complete the repetitive counting task.
The method showed excellent performance on YT_Segments
dataset. However, their algorithm decayed a lot when there
are actions with different repetitive modes from the trained
modes. The wavelet transform was presented in [14] to better
deal with more complex and diverse video dynamics. From
the flow field and its differentials, they derived different
repetitive perceptions. Based on the gradient, curl and diver-
gence, a motion foreground segmentation representation based
on flow was realized, and remarkable results were obtained.
In their recent work [33], they improved their foreground
motion segmentation method by obtaining the segmentation
results directly from the wavelet filter responses and obtained
a significantly improved performance. However their methods
need the foreground segmentation, which is also a difficult
problem. Therefore, we propose a method without extra pre-
processing.

B. Deep Features for Action Analysis

CNNs have been widely used in action recognition. Some
of these CNNs use deep architectures with 2D convolutions to
extract translation-invariant features in the video frames [15].
Specifically, Karpathy ef al. [15] first introduced a CNN based
method for action recognition and organized a large-scale
sports video dataset (i.e., Sports-1M dataset) for training deep
CNNs. To model the temporal information of the action, two-
stream based CNN learning framework [16], [28] has been
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Fig. 3. The framework of BN-Inception Network.

proposed. The two streams mean the spatial stream represented
by RGB values and the temporal stream represented by pre-
computed optical flow features. Because of the excellent bal-
ance between efficiency and effectiveness, the BN-Inception
Network [23] is used as the backbone of the framework.
The prominent characteristic of BN-Inception network is the
Inception module, which carries out multi-scale processing and
fusion of image features to extract better feature representa-
tion. Moreover, it is well known that the 3 x 3 convolutional
kernel has the best performance in VGG [24], and a very
effective Batch Normalization (BN) method has been proposed
to accelerate the learning of data distribution during training,
making the accuracy of the classification improve significantly.
In addition, the deep ConvNets can take pictures with any form
as input to extract features. The training of deep ConvNets
requires a large number of training samples to achieve good
performance in action modeling. Nowadays, a large number of
publicly available video datasets provide great convenience.
Therefore, we extract the deep features of our experimental
data using BN-Inception Network in this paper.

III. ACTION REPETITION COUNTING

In this part, we will discuss the proposed algorithm.
As shown in Fig. 4, our algorithm includes four steps. Firstly,
deep features of the unconstrained videos are extracted using
deep ConvNets. Secondly, based on the high-dimensional deep
features, the periodic signal is generated using PCA, and a one-
dimensional waveform can be obtained to reflect the repetitive
changes of the videos. Thirdly, the action repetition rules are
extracted to reconstruct the periodic waveform of the repetitive
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Fig. 4. The framework of action repetition counting.

action using a signal trend removal scheme with polynomial
regression and the high energy rules extracted from the 1D
waveform that combines both Fourier analysis, power spectral
analysis and the inverse Fourier transform. Finally, using the
waveform, peak detection is used to count the repetition.

A. Deep Feature Extraction Based on BN-Inception ConvNets

The Inception v2 based on Batch Normalization network
[15] is used to obtain the features of the action, as shown
in Fig. 3. It was pre-trained on the large public Kinetics-400
dataset [25], which contains 300,000 clip videos from real
scenes, including 400 action categories, which is a widely used
dataset for action recognition. The pre-trained models used in
this paper are provided in [28].

Two networks are used to extract robust action features,
operating on two components, spatial and optical flow sepa-
rately. The spatial flow network operates on the RGB image,
which extracts spatial features describing the scene and object
information. The optical flow network takes the pre-computed
optical flow images as the input to extract the temporal
features, which describe the motion information of the video.
Robust spatiotemporal features are extracted by this method.
Fig. 5 shows a diagram for feature extraction of the action.

Clipping and rotation of training images, to decrease the
influence of the noise and increase the stability of features, are
used to get the image set. In the process of feature extraction,
we take the image set as network input and get the features
in the avg_pool layer. Then the summation and the average
features are computed in each dimension. Finally, the spatial
features, denoted by f;, and temporal features, denoted by f;
are extracted for the single image, respectively. We further
get their fusion features fy via concatenate operation by
equation 3. Due to the designed structure of the network, the
dimension of the spatial features and temporal features is 1024,
as shown in equations 1 and 2, and therefore, the dimension
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Fig. 5. The diagram of the deep feature extraction. The input modalities of
BN-Inception are the RGB images and optical flow fields (x, y directions).
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of the fusion features is 2048.

fs = (51,52,...,51024) (1)
fr= (1,1, ..., to24) 2)
fr = (s1,5,...,51024, 1, 12, . .., 11024) 3)

As discussed above, deep features with different modes can
be obtained using the pre-trained models and we do not need to
retrain the model using repetitive actions. The extracted deep
features of the video with different modes can be represented
by three 2D matrices with the shape of N x D (where N
is the total number of the video frames and D (i.e. 1024 or
2048) is the dimension of the features). Taking the spatial
features of the video as an example, it can be marked as
Fs = [fs0, fs1 -+ fsv—1)], where f; denotes the spatial
features of the (i + 1)-th frame of the video according to
equation 1. Similarly, the temporal features and fusion features
of the video can be marked as F; = [f, fi1 - fiv—1)]
and Fy = [fro. fr1--- frav—n]. respectively. The spatial
and temporal features are visualized in Fig. 6, where spatial
features are given in Fig. 6(a), and temporal features are given
in Fig. 6(b). From the visualization results, although we can
find some specified patterns, it is difficult for us to find the
periodic rules using this high-dimension features. Therefore,
we need some other methods to mine the periodicity of the
repetitive action.

B. Periodic Signal Generation

To extract the periodicity information, we mine the hidden
periodic action rules from different features, including the
spatial features Fj, the temporal features F;, and the fusion
features F'y. The mining method for these features is the same;
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Fig. 6. The visualization of deep features.

therefore, we take spatial features Fy as an example to explain
our extraction method.

Although deep features can be used to classify the actions
well, the counting of the repetition of the action is totally
different from the classification of the action. For classifi-
cation, one action is considered as a whole, and it focuses
on the difference between different actions. On the contrary,
action repetition counting focuses on locating the repetition
of the same motion pattern. Therefore, the deep features
extracted directly for action recognition may not be suitable
for counting. We transform the high-dimensional features into
an intuitive waveform by extracting the primary component of
its covariance matrix.

For the feature matrix Fy = [ fs0, fs1 -+ fs(v—1)], we obtain
its mean matrix F, and construct the transformation matrix F
using F = F, — F. Then, the covariance matrix is calculated
according to equation 4.

LA T T
Cov=—FF =VAV )

We also can compute the eigenvalues and eigenvectors of
the covariance matrix. The corresponding results are separately
denoted by their matrix form as A = diag (A1, A2 -+~ AD)
and V = [u1, u2---upl, where each u; is a vector with
dimension D. We arrange A according to the value of its
eigenvalue from large to small. And according to the new
order of eigenvalues, we rearrange V to V' in columns.
Then, we reserve the first eigenvector to get the transfor-
mation matrix V{. The size of V| is D x 1. Therefore the
mapped matrix P = (po, p1, p2 ... P(N—1)) can be computed
according to formula 5, where p; is the principal component of
(i 4+ 1)-th frame of the videos, i =0, 1,... N — 1. The size of
P is N x 1, by which the high-dimensional video features are
transformed into the new space constructed by 1D waveform,
as shown in Fig. 7.

p.=V{"f (5)

To analyze the effect of different principal components,
we also compute the first 10-dimensional principal component
transformation matrix V{O, the size is D x 10. For each dimen-
sion, we get the mapped vector separately, the visualization
results are shown in Fig. 7. From this figure, we can see that
the first-dimensional feature includes more information on the
motion characteristics of repetitive actions. Therefore, in this
paper, the first-dimensional principal component is used to
count the repetitive action.
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Fig. 7. Periodicity visualization of the repetitive action.

Fig. 8. Various feature modes under different circumstances. Video 1 rep-
resents a video with a relatively static background and Video 2 represents
a video with a relatively dynamic background. The left one denotes the
video 1 and the right one denotes the video 2. Taking the video 1 as an
example, Fig. 8(a), Fig.8(b) and Fig.8(c) show the 1D waveform mined from
the spatial, temporal and fusion features, respectively, which can be obtained
by the method proposed in Section III-B. Fig. 8(d) show the Power Spectral
Density(PSD) of the video 1.

C. Energy-Based Adaptive Feature Mode Selection

We found that different feature modes are robust to different
types of videos. For example, the spatial features are usually
robust to the video with a static background, and the temporal
features or fusion features are usually robust to the video with
a dynamic background. As shown in Fig. 8, for the video
with a relatively static background (e.g. video 1), the 1D
waveform mined from the spatial features can better reflect the
periodicity of the repetition actions than that of the temporal
feature, but for the video with a relatively dynamic background
(e.g. video 2), the 1D waveform mined from the temporal
features can better reflect the periodicity of the repetition
actions than that of the spatial feature.

Besides, as shown in Fig. 8, we find that the high peaks of
the video with a relatively static background usually lie in a
relatively low frequency of their Power Spectral Density (PSD)
while the high peaks of the video with a relatively dynamic
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background usually lie in a relatively high frequency of their
PSD. Based on this insight, we propose an energy-based
feature mode selection scheme using PSD to adaptively select
feature mode, which can be described as follows.

Given a 1D waveform of a video as x[7] (t =0,1,--- , N—
1) that can be mined from the fusion features, containing both
the spatial features and temporal features, by the proposed
method in Section III-B. Firstly, we obtain the PSD of the
video. Specifically, the time-varying signal is decomposed into
the superposition of the components in the frequency domain
by Fourier transform. The vibration frequency of the waveform
is separated to get the spectrum by equation 6. Secondly, the
PSD of x[¢] can be calculated by equations 7 as S[k]. Based on
the S[k], high peak detection is applied to locate the frequency
coordinate of the highest peak, and we mark it as p. Finally,
the final features of this video can be obtained by equation 8.

N-1
X[k = > xlrle 7 H k=0,1,---,N=1)  (6)
t=0
( X[kD)?
S[k] = 5 %)
0 XD
FS’ IPI < Tl
Ffinat = Fr, Ipl>Ts (®)

Fy, otherwise

where 77 and 7> are two thresholds that can be manually
defined by the user. In experiments, we set the 77 and 7>
to 2 and 20, respectively.

D. Action Periodicity Reconstruction and Repetition
Counting

Due to the complexity and diversity of the videos captured
in the real scene and the non-standardization during the action
execution, the principal component contains lots of noises.
As shown in Fig. 7(a), although there are some repetitive
motion rules in the figure, the lower peak and the noises
may lead to poor performance when counting. To locate the
repetitive action, we need to distinguish the interesting actions
from the unrelated noises. As discussed above, in the real
challenging scenes, the video with repetitive actions usually
has the following characteristics. (1) The noise caused by the
background noise and view changes usually reflects as a time-
varying DC component of the 1D waveform of the video.
(2) The coupled motion is easily double counted due to the
different motion frequencies or the self-similarity between the
main action and its sub-actions, leading to large additional
counting errors. (3) The interesting repetitive actions, includ-
ing the main action and its sub-actions, usually carry more
energy with relatively high frequency than the other unrelated
movement. In the following sections, we first propose a signal
trend removal scheme to eliminate the effect of the time-
varying DC component, to a great extent, caused by the
background noise and the view changes of the camera. Then,
we propose a high-energy-based complex action detection
scheme to extract the robust periodic signal of the repetitive
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action by mining the relationship between the main action and
its sub-actions.

1) Signal Trend Removal: The changing of the feature
signal comes from two main sources: one is the changes of the
original action itself, the other is the drifting or the changing
of the background and the viewpoint of the cameras. The
former variation is useful, but the latter one is the disturbance
for the description of the action. The latter changing is often
corresponding to the time-varying DC component, that is to
say, it can reflect the general trend of the feature. Therefore,
we name this changing as the signal trend, as shown in Fig. 2.
The signal trend is often unrelated to the action. Therefore,
we need to remove it from the feature signal. Here, we propose
a signal trend removal scheme by subtracting this signal trend.
Specifically, we first apply polynomial regression to simulate
this signal trend as b[t] by equation 9, and the parameters
of the signal trend, W, can be learned by minimizing the
loss Lj according to the equation 10. Then, we obtain the
filtered signal Pr[t] based on the simulated signal trend b[¢]
by equation 11.

blt] = b(t, W) = wo + w1t + wat*> 4+ - - + wyt™ = T,W

)
1Nfl

Ly =3 > (bl = Plr])’ (10)
t=0

Pylt] = Pl1] - blr] (11)

where T, = [1,¢,--- ,tM], W = [wo, w1, -+, wy )T, Plt] is
the generated periodic waveform mined from the final feature
Ffinai using the method proposed in Section III-B, N is
the number of the video frames, and M is the order of the
polynomial.

2) High-Energy-Based Action Periodicity Reconstruction
and Repetitive Counting: The aims of this section are two-
fold: (1) locate the interesting repetitive actions of the video,
containing the main action and its sub-actions; (2) reconstruct
the periodic waveform of the video.

a) Locate the Interesting Repetitive Actions of the Video:
Because the main energy of the video with relatively high fre-
quency comes from the interesting repetitive actions, we pro-
pose a two-stage threshold filter scheme to locate the interest-
ing repetitive actions of the video, including the main action
and its sub-actions, using the Fourier transform and the PSD
of the corresponding video.

For the first stage, we propose a high-energy-based action
location scheme to roughly locate the interesting action.
Specifically, using the filtered waveform Py[f] of the video
obtained in Section III-D.1, we first obtain their frequency
spectrum and power spectrum by equations 6 and 7, respec-
tively, marking as X;[k] and S;[k], respectively. Then, we set
a threshold 6; to define the boundary between the interesting
actions and the unrelated actions in the power spectrum of the
video. Finally, as shown at the middle of Fig. 9, the filtered
frequency spectrum X/f [k] and the power spectrum S’f [k] of
the interesting actions can be located with the main-energy
by filtering the low-energy power spectrum of the unrelated
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Fig. 9. The results of high-energy-based action periodicity reconstruction.
In Fig. 9(a) or Fig. 9(b), we show the diagram of an example video with
or without coupled motion, respectively. For each figure, we first show the
waveform of the first 1D component of our adaptive features generated in
Section III-B and its corresponding frequency spectrum and power spectrum
at the top of the figure; then, we show the frequency spectrum and power
spectrum of the located interesting repetitive actions and our reconstructed
periodicity action waveform, respectively; finally, we show our final recon-
structed periodic waveform.

motion according to equations 12 and 13.

X;lk], Silk] =6,

Xylkl = 0, Si[k] < 6 (12
Slk] = ?m’ﬁiz (1)

where k =0, 1,---, N —1, N is the number of video frames,
0 is a threshold to define the low energy and 6, is a threshold
to define the low frequency. In experiments, 8; and 6, are set
to 0.5% x (max{S;}) and 0.15% % respectively.

For the second stage, based on the frequency spectrum
X’f[k] and the power spectrum S}[k], we further filter the
noise with low energy and relative low frequency by equa-
tions 14 and 15.

b) Reconstruct the Periodic Waveform of the Video:
Because the located interesting repetitive actions of the video
contain both the main action and its sub-actions, and as dis-
cussed above, the sub-actions will cause miscounting errors to
a great extent. Therefore, to reconstruct the accurate periodic
waveform of the video, it is important to detect the sub-
actions of the video and eliminate the information of the
sub-actions.Therefore, using the frequency spectrum X r[k]
and power spectrum S [k] of the located interesting repetitive
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actions above, the reconstruction detail of the periodic wave-
form of the video can be summarized as follows.

Coupled Motion Detection and counting(CMD). For one
action including the coupled motion, the occurrence times of
its sub-action usually are the multiple of the times of the
main-action. Therefore, we can easily detect it using frequency
analysis. Specifically, we first use spectral decomposition to
extract the dominant frequencies. Then the inverse Fourier
transform is used to obtain the temporal waveform of the
corresponding frequency. Peak detection is adopted to compute
the times of the signal with the corresponding frequency. If the
times of the signal with one frequency is the multiple of
the signal with the other frequency, then the original signal
contains coupled motion. The least times is the occurrence
times of the main action, and the repetition counting of the
action can be obtained.

The detailed process is as follows. As shown in Fig. 10 (b),
the power spectrum Sy[k] contains multiple groups of high
peaks. Firstly, as shown in Fig. 10 (c) and Fig. 10 (d), we use
spectral decomposition to obtain the signals with the single
group frequency {Sy;[k]} and their corresponding frequency
spectrum as {X r;[k]}. Secondly, the Inverse Fourier Transform
is applied to reconstruct the corresponding waveform of the
single group of high peaks by equation 16, respectively,
as shown in Fig. 10 (e) and Fig. 10 (f). Thirdly, peak detection
is applied to calculate the number of periodicity of the
waveform. Finally, we detect whether there exists the integer
quantitative relationship among the periodicity numbers of
different waveforms. For example, suppose the periodicity
number of the waveform in Fig. 10 (e) and Fig. 10 (f) are N;
and N, respectively, if the remainder of % or %—f is 0, the
relationship between the Fig. 10 (e) and Fig. 10 (f) is the main
action and the corresponding sub-actions, and the frequency
spectrum and power spectrum of the reconstructed waveform
can be obtained by removing the sub-actions, as shown at
the bottom of Fig. 9(a). In this case, the final counting
results are the periodicity number of the main action, and
it can be obtained using the highest peak detection with the
reconstructed waveform shown in Fig. 9(a).

N—1
1 2k
alt] = g X filkled % (16)

where z;[¢] is the waveform signal of the i-th single group of
high peaks.

Counting for the action without the coupled motion. If
the action does not consist of the coupled motion, the counting
for the repetition is easy. In this case, since the dominant
energy of the video comes from the repetitive action, we can
use the highest energy rule to directly locate the repetitive
action. Specifically, as shown in the middle of Fig. 9(b),
we first decompose the spectrum of the video by detecting
the group of the highest peak in their power spectrum. Then,
we use Inverse Fourier Transform to reconstruct the periodic
waveform of the video using the corresponding spectrum,
as shown at the bottom Fig. 9(b). Finally, the high peak
detection is applied to obtain the final counting results of the
video.
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Fig. 10. The diagram of the detection and counting for the action with
coupled motions. In Fig. 10(a), we give a signal features extracted from the
video using deep features and principal component analysis. In Fig. 10(b),
we give its PSD. In Fig. 10(c) and (d), using spectral decomposition, we can
decompose the original PSD into two signals with frequencies of two groups.
In Fig. 10(e) and (f), we give the inverse Fourier Frequency Transformation
results of (c) and (d).

IV. EXPERIMENTS

YT_Segments [13], QUVA [14], and Real-world Action
Repetition Videos (RARV), a new proposed dataset, are used
to evaluate our algorithm. These data are diverse and challeng-
ing, and they also include the movement of the camera and
background. The repetitive actions have varying lengths and
complicated appearance patterns.

A. Datasets

1) YT _Segments: It contains 100 videos with repetitive
actions, including exercise, cooking, architecture, and so on.
To create a clean benchmark, the videos are pre-split and only
contain repetitive actions. The number of repetitive motion is
pre-labelled. The smallest and largest numbers of the repetition
are 4 and 50, respectively. The average duration of one video
is 14.96s. Meanwhile, there are 30 videos with varying degrees
of camera movement.

2) QUVA: Tt’s also made up of 100 videos and shows vari-
ous kinds of repetitive video dynamics, including swimming,
stirring, cutting, and so on. Compared with the YT_Segments
dataset, it has more challenges in cycle length, motion appear-
ance, camera motion, and background complexity. Therefore,
the dataset is a more realistic and challenging benchmark for
estimating repetitive action.

3) RARV: It contains 200 videos in total with diverse back-
grounds, including static backgroud, dynamic background, etc.
The dataset is built by merging data from both YT_Segments
and QUVA datasets. In the new dataset, we can compre-
hensively evaluate our model under the assumption of the
unknown background in advance.

B. Evaluation Metrics and Baselines

1) Metrics: We use the same evaluation criteria [13] as
those that used in the baselines as the metric for this task.
For N videos, we calculate the Mean Relative Error(MRE) =+
standard deviation (o) [13] as the evaluation metrics, where
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TABLE 1
COMPARISONS WITH THE STATE-OF-THE-ART BASELINES
Datasets
Methods YT_Segments QUVA RARV
Pogalin et al. [17] 21.9 + 30.1 385+ 37.6 30.2 + 339
Levy & Wolf [13] 6.5 +9.2 482 £ 61.5 274 + 354
Runia &Snoek [14] 10.3 +19.8 232+ 344 16.8 +27.1
Runia et al. [33] 94+174 26.1 + 39.6 —
Ours 9.6 + 8.6 19.9 + 33.5 | 14.3 +18.9
G is the ground truth and R is the predicted value
N
1 |G;i — R;|
MRE = — > ———
N “ G;
i=1
1 N
2 2
- = — G—-R (17)
v le (G —R)

2) Baselines: We compare our method with one classical
method [17] and two recent methods in [13], [14]. When
reporting the results, we directly make use of the results
provided in the paper [14].

C. Comparisons With State-of-the-Art Baselines

1) Overall Results and Analysis: We compare the perfor-
mance of our method with state-of-the-art baselines, and the
results are presented in Table I. Compared with the baselines,
our method achieves superior or comparable performance
without extra preprocessing. (1) For the YT_Segments dataset,
the method of [13] performs best with the MRE of 6.5. Our
method is superior to articles [14], [17] with the MRE of 9.6,
and we achieve the best standard error compared with the
above methods, which illustrates that the worst performance
of our method is the best in all the methods. Although the
MRE of [33] is slightly better than that of our method, their
standard errors are significantly worse than that of our method,
showing the effectiveness of our method. The results show that
our method can achieve good performance under the relatively
static background. (2) In the more challenging QUVA dataset,
our experimental results achieve the best performance at both
the MRE and the standard error. The method [13] performed
the worst with the MRE of 48.2, because their network
considered only four types of action during training. The
method of [17] was 38.5. In [14] and [33], the MRE was 23.2
and 26.1, respectively. These results show that our method
can also adapt well to the dynamic backgrounds. (3) For the
dataset with more diverse backgrounds (i.e. RARV), compared
with the baselines, our method achieve the lowest MRE and
standard error by a large margin. For example, compared with
the the best baseline [14], the MRE of our method decreases
by 2.5, and the standard error deceases by up to 8.2, showing
the effectiveness of our proposed method powerfully.

In summary, compared to the above methods, we get the
best standard error on the three public datasets. At the same
time, we get the lowest MRE on most datasets. The results
show that our method can achieve superior or comparable
results in counting action repetition for unconstrained videos
with a decent framework, not relying on preprocessing.
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Fig. 11. The detailed counting results of our method.

2) Detailed Results and Analysis: To further validate
our contribution, on YT_Segments and QUVA (Since the
videos on RARV come from both the YT_Segments and
QUVA datasets, we here only give the detailed analysis on
YT_Segments and QUVA, respectively), we give the counting
results in detail, as shown in Fig. 11. From Fig. 11(a), we can
see that the counting results of most of the actions are very
close to their groundtruth and the differences cluster around
positive or negative 1. Our peak-detection counting scheme
can well explain this. Because we use the number of the peaks
as the counting results, it is slightly different from the repet-
itive case, where the repetition is, in fact, a cycle. Therefore,
using more detailed cycle detection may solve this problem.
In addition, there are some videos (e.g. video 11 and video 22)
whose errors are relatively large. In video 11, as shown in
Fig. 12(a), the energy of the reconstructed waveform is too
low, and therefore this may be caused by some noise. The
possible reason is: during the process of the coupled motion
detection, the frequency of the noise is similar to that of the
sub-action while there exists no sub-action actually, leading
to error detection. In video 22, as shown in Fig. 12(b), this
is a coupled motion, but the power spectrum of the action
mainly contains one group of high peaks. The possible reasons
are two-fold: (1) the high peaks of the main action and its
sub-action are coupled together; (2) the high peaks of the
main action are with low energy. During the reconstruction
of action periodic waveform, the high peaks with low energy
are removed, and the coupled high peaks can not split using
our proposed method. In this case, we can not reconstruct the
real periodic waveform of the main action, leading to double-
counting.

From Fig. 11(b), besides the above mentioned negative and
positive 1 difference problem, there are also other problems.
We found the main error occurs on this challenging dataset
becasue the interesting action is associated with multiple
objects, and these objects move periodically with these actions.
As shown in Fig. 13, their corresponding power spectrum
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Fig. 12. Analysis of failed counting cases on YT_Segments. For each figure,
the top one denotes the periodic waveforms before and after reconstruction
using our proposed action periodic mining rules; the middle one denotes the
power spectrum of the first 1D component of our adaptive features generated
in Section III-B (1PC waveform); the bottom one denotes the power spectrum
of our final reconstructed waveform, it is the same in Fig. 13.

contains multiple high peaks with high energy. After the
waveform reconstruction with our proposed algorithms, some
high-peaks will be removed, remaining only one group of high
peaks. Therefore, much useful information has been filtered,
leading to poor performance. For example, for a ’shoveling
snow’ action in video 16, the snow, the shovel, the feet of
human, and the camera are periodic moving together. But after
periodic mining with the proposed method, only one group of
high peaks is left. In the future, we will focus on this.

In summary, the main error of our method lies in two
aspects. One is the difference between the peak and the cycle.
The other is the coupled submovements in action and the
movement with their associated objects.

D. Ablative Analysis

In this section, we conduct extensive ablative experiments to
show the effectiveness of our proposed method. Specifically,
we first conduct a series of experiments to analyze what has a
greater impact on our superior performance. Then, we verify
the effectiveness of energy-based adaptive feature mode selec-
tion scheme (EAFS), signal trend removal scheme (STR), and
coupled motion detection scheme (CMD), respectively.

To show what factors have a greater impact on our
superior performance, we conduct two group experiments:
(a) Evaluation of deep features: we extract deep features using
the pre-trained models on different datasets (i.e. HMDBSI,
UCF101, and Kinetics-400). In this case, we show how do
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Fig. 13.  Analysis of failed counting cases on QUVA.

deep features influence the results of our model. The results
are shown in Table II and Fig. 14. As shown in Table II, for the
YT_Segments dataset, the deep features using the pre-trained
model on UCF101 achieve the lowest MRE, but their standard
error is higher than that of the deep features with Kinetics-400
pre-trained model; for both the QUVA and RARV datasets,
the deep features using the pre-trained model on Kinetics-400
obtain both the lowest MRE and the lowest standard error.
Although the features using the pre-trained models on the
larger dataset such as Kinetic-400 can achieve superior per-
formance, their performance difference is limited. This shows
our proposed method does not heavily rely on different deep
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TABLE III

EVALUATION OF OUR PROPOSED ACTION PERIODIC MINING RULES,
WHERE “HFEAT”, “UFEAT” AND “KFEAT” DENOTE THE FEATURES
EXTRACTED USING THE PRE-TRAINED MODEL ON HMDBS5I,
UCF101 AND KINETICS-400 DATASETS, RESPECTIVELY

Datasets

E YT_Segments QUVA RARV
eatures
w/0 APMR (Hfeat) 94.5+3483.3 100+£13164.8 | 95.4£7007.0
Ours (Hfeat) 8.2+ 7.7 21.5+46.8 14.9+ 27.2
w/o APMR (Ufeat) 96.0+3296 97.0£10346.9 | 96.51+6821.7
Ours (Ufeat) 7.6 £7.4 20.2+37.9 13.9+22.7
w/0 APMR (Kfeat) 98.2+ 4841.7 | 96.2+ 10530.6 | 99.1+9003.2
Ours (Kfeat) 9.6+ 8.6 19.9+33.5 14.3+ 18.9
TABLE IV

EVALUATION OF ADAPTIVE FEATURE MODE SELECTION
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Feature
| % |
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Frames. mes

(b) QUVA

Fig. 14. Visualized results of analyzing factors on our superior performance.
In Fig. 14(a) and Fig. 14(b), the left one denotes the waveforms of the first
1D component of our adaptive features generated in Section III-B, the right
one denotes the corresponding waveforms reconstructed with our proposed
method in Section III-D.2.

TABLE 11
EVALUATION OF DEEP FEATURES

Fenre— D151 | vT Segments | QUVA RARV

FIMDB51 features 100£131 | 2052512 | 1535321
UCFI01 features 90L127 | 210£439 | 14.4%262
Kinetic-400 features 9.6+ 8.6 19.9+33.5 | 14.3+ 18.9

features, and the superior performance benefits from our pro-
posed action periodic mining rules to a great extent. Moreover,
as shown in Fig. 14, the reconstructed waveforms using the
deep features with various pre-trained models are very similar,
showing the effectiveness of our proposed method again.

(b) Evaluation of our proposed action periodic mining rules
(APMR): based on the generated waveform in Section III-B,
we obtain the counting results with the high peak detection,
and the results are reported in Table III and Fig. 14. As shown
in Table III, compared with the results of “w/o APMR?”, the
errors of our method decrease significantly, demonstrating the
effectiveness of our proposed method again. The reasons are:
as shown at the left of Fig. 14, the generated waveforms
extracted from the deep features contain lots of noises. There-
fore, it is not suitable for counting directly, and it needs
more robust algorithms to mine the action periodic rules. By
contrast, as shown at the right of Fig 14, the reconstructed
waveforms with our proposed method are smooth and can
better reflect the periodicity of repetitive action.

To show the effectiveness of the energy-based adaptive
feature mode selection scheme (EAFS), we conduct three
experiments by using spatial features, temporal features and

B Datasets | v gegments | QUVA RARV

W/ EAFS () 165122 | 2435529 | 21053556
w/o EAFS (Fy) 1275109 | 2001349 | 1635229
W /0 EAFS (F;) 1145146 | 2001349 | 1575247
Ours 9.61+8.6 19.94+33.5 14.3+ 18.9
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Fig. 15. Visualized results of adaptive feature mode selection, where the
left one of Fig. 15(a) and Fig. 15(b) denotes the waveforms of the first
1D component of our adaptive features generated in Section III-B, the right
one denotes the corresponding reconstructed waveforms using our proposed
method in Section III-D.2.

fusion features, respectively. The experimental results are
reported in Table IV and Fig. 15. As shown in Table IV,
without considering the background and simply using one of
the feature modes for all videos will decline the performance
of our model, showing the effectiveness of our proposed
EAFS scheme that adaptively selects the proper feature mode
according to the background of the video. As shown in Fig. 15,
the reconstructed periodic waveforms using different features
are very different. For example, for the video of Fig. 15(a),
the temporal features or fusion features may be better than
the spatial features for accurate counting, but for the video of
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TABLE V
EVALUATION OF SIGNAL TREND REMOVAL
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TABLE VI
EVALUATION OF COUPLED MOTION DETECTION

Datasets Datasets
Features YT_Segments QUVA RARV Features YT_Segments QUVA RARV
w/o STR 109 £ 13.2 22.8 £56.0 | 16.8434.6 w/o CMD 108 +£9.4 33.94+ 1464 | 21.5+77.9
Ours 9.6+ 8.6 19.9+33.5 | 14.3+ 18.9 Ours 9.61+8.6 19.94+33.5 | 14.3+ 18.9
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Fig. 16.  Visualized results of signal trend removal. In Fig. 16(a) or Fig.
16(b), from top to bottom, it denotes the waveform of the first ID component
of our adaptive features generated in Section III-B, the reconstructed wave-
form of “w/o STR” and the reconstructed waveform our proposed method,
respectively.

Fig. 15(b), the spatial features may be better than the temporal
or fusion features for counting. The quantitative and qualitative
results further show the importance of adaptive feature mode
selection for accurate counting.

To evaluate the effectiveness of the signal trend
removal (STR) scheme, we conduct the experiments by remov-
ing this scheme from our methodology, and the results are
shown in Table V and Fig. 16. As shown in Table V, without
removing the signal trend caused by the background noise
and changing views of the camera, the errors on all datasets
increase greatly, showing the effectiveness of our signal trend
removal scheme. As shown in Fig. 16, without our proposed
STR scheme, the reconstructed periodic waveforms are poor
at the later time-steps of the video, and it is hard to achieve
accurate counting using such waveforms. By contrast, with the
proposed STR scheme, the reconstructed waveforms are better,
showing the importance of removing the time-varying DC
component caused by the background noise and the camera.

To evaluate the effectiveness of the coupled motion detec-
tion scheme (CMD), we remove this scheme of our method-
ology. In this case, we obtain the counting results using the
highest energy rules as described in the Section III-D.2. The
results are reported in Table VI and Fig. 17. As shown in
Table VI, the errors of “w/o CMD” decrease on all datasets,

rrrrrrrr

L L L L
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0 100 200 300 100 500 600
Frames

(b) QUVA
Fig. 17. Visualized results of coupled motion detection.
especially on the more challenging datasets such as QUVA
and RARV. Because of the more challenging datasets, human
action is very complex, there may exist many actions with
coupled motion characteristics, as shown in Fig. 1. There-
fore, it easily suffers from miscounting on these datasets,
leading to poor performance. As shown in Fig. 17(a) and
Fig. 17(b), without removing the corresponding sub-actions,
the frequencies of the reconstructed action periodic waveforms
are usually double, and therefore it easily causes double-
counting, showing the importance of CMD and removing the
corresponding sub-actions.

V. CONCLUSION

We propose an important insight that the periodicity of the
action can be well modelled by the deep features extracted
from the action recognition task. We think this insight is very
important for repetition counting due to two reasons. On the
one hand, the repetition counting method can borrow the
state-of-the-art results or experiences from action recognition,
which decreases the gap between the development of action
recognition and the repetition counting. On the other hand,
this insight can simplify the repetition counting task from the
trivial preprocessing or synthetic mode generation.

Based on this insight, we propose a new counting method
using high energy rules for unconstrained videos. In detail,
using the pre-trained model, we extract deep features, includ-
ing the temporal evolution characteristics of video actions and
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the unique appearance and spatiotemporal characteristics of
motion patterns, by deep ConvNets, and then the periodic
movement information is obtained by the PCA based on
the deep features. Besides, we propose a novel scheme to
adaptively select proper features for the videos with the
different backgrounds, making it robust in the real complex
scenes. Furthermore, we compute the frequency spectrum
and power spectrum based on Fourier transform to remove
noise information by action periodicity reconstruction scheme.
Finally, the time sequence waveform is smoothed, and the
action repetition counting task is completed according to peak
detection. Extensive experimental results show the effective-
ness of our method.

Compared with the existing methods, our method is simple
and flexible without preprocessing. However, it still has poor
performance when there is interference or chaotic background
in the motion, especially when there are main actions with
low energy or the repetitive actions associated with multiple
objects simultaneously. These interferences make it hard to
analyze the motion characteristics of the target object accu-
rately. We will focus on these problems in the future.
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