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a b s t r a c t 

Automatic segmentation of polyp regions in endoscope images is essential for the early diagnosis and sur- 

gical planning of colorectal cancer. Recently, deep learning-based approaches have achieved remarkable 

progress for polyp segmentation, but they are at the expense of laborious large-scale pixel-wise annota- 

tions. In addition, these models treat samples equally, which may cause unstable training due to polyp 

variability. To address these issues, we propose a novel Meta-Learning Mixup (MLMix) data augmentation 

method and a Confidence-Aware Resampling (CAR) strategy for polyp segmentation. MLMix adaptively 

learns the interpolation policy for mixup data in a data-driven way, thereby transferring the original soft 

mixup label to a reliable hard label and enriching the limited training dataset. Considering the difficulty 

of polyp image variability in segmentation, the CAR strategy is proposed to progressively select relatively 

confident images and pixels to facilitate the representation ability of model and ensure the stability of the 

training procedure. Moreover, the CAR strategy leverages class distribution prior knowledge and assigns 

different penalty coefficients for polyp and normal classes to rebalance the selected data distribution. 

The effectiveness of the proposed MLMix data augmentation method and CAR strategy is demonstrated 

through comprehensive experiments, and our proposed model achieves state-of-the-art performance with 

87.450% dice on the EndoScene test set and 86.453% dice on the wireless capsule endoscopy (WCE) polyp 

dataset. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Colorectal cancer (CRC) is the second most common cause of 

ancer-related deaths in the United States, with 52,980 estimated 

eaths in 2021 ( Siegel et al., 2021 ). Fortunately, if adenomatous 

olyps, i.e., precursors to CRC, are detected and removed before 

hey develop into malignant tumors, deaths caused by CRC can be 

ignificantly reduced, with a favorable 5-year survival rate of 90% 

 Siegel et al., 2021 ). Colonoscopy and WCE are common diagnos- 

ic tools that are used in regular screening procedures to identify 

he adenomatous polyps ( Jia et al., 2019 ). This procedure is usually 

erformed manually by clinicians and can be subjected to human 

rrors and missed diagnosis of polyps. Hence, an automatic and 

eliable polyp region segmentation model is highly demanded for 

ssisting clinicians in the diagnostic process. 
∗ Corresponding author at: Department of Electrical Engineering, City University 
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In the last decades, numerous deep learning-based convolu- 

ional neural networks (CNN) have been developed for the au- 

omatic polyp detection and segmentation ( Vázquez et al., 2017; 

hou et al., 2018; Akbari et al., 2018; Yuan et al., 2018; Guo and 

uan, 2019; Jha et al., 2019; Fang et al., 2019; Qadir et al., 2019; 

ickstrøm et al., 2020; Zhang et al., 2020a; Jia et al., 2020; Fan 

t al., 2020; Nguyen et al., 2020; Yang et al., 2020; Lin et al., 2020;

u et al., 2021; Liu et al., 2021; Chen et al., 2021; Jha et al., 2021;

uo et al., 2021a; Yang et al., 2021; Guo et al., 2021b ). Most of

hese methods are based on encoder-decoder network architec- 

ures, where polyp segmentation masks are learned in an end-to- 

nd manner and supervised by pixel-wise annotations. The success 

f deep CNNs usually depends on the sufficient annotated data. 

espite considerable progresses, current polyp segmentation algo- 

ithms still could not fulfill clinical requirements ( Wu et al., 2021 ), 

nd the design of automatic polyp recognition system with desir- 

ble reliability remains challenging due to the lack of abundant an- 

otated datasets and the variability of obtain polyp images . 

The lack of abundant annotated datasets is the first obstacle. 

igh-quality annotated datasets are scarce in polyp segmentation 

https://doi.org/10.1016/j.media.2022.102394
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2022.102394&domain=pdf
mailto:yxyuan.ee@cityu.edu.hk
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X. Guo, Z. Chen, J. Liu et al. Medical Image Analysis 78 (2022) 102394 

t

q

s

t

2

d

t

n

l  

i

a

c

y

s

m

f

t  

p

l

e

d

h

s

d

a

i

M

f

a

m

e

i  

a

a

a

f

t

T

r

d

a

i  

o

a

m

b  

a

r

e

h

c

p

i

f

u

s

d

s

t

i

f

p

r

s  

u

Fig. 1. Motivation of the proposed CAR strategy. In order to ensure the stable train- 

ing of the segmentation net, we implement (a) the image-level selection and (b, 

c) the pixel-level selection in an easy-to-hard gradual learning manner for model 

optimization. Note that selected (b) foreground pixels (green regions) and (c) back- 

ground ones (blue regions) are rebalanced by assigning different penalty propor- 

tions. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

o

e

k

ods. 
asks, because the acquisition of expert pixel-level annotations re- 

uires a high degree of attentiveness and domain expertise. A fea- 

ible solution is to enlarge the limited dataset via data augmen- 

ation ( Krizhevsky et al., 2012; Vázquez et al., 2017; Guo et al., 

021a ). However, traditional augmentation methods, such as ran- 

om rotation, only create new images that are similar to original 

raining images. Although the recently proposed mixup generates 

oticeably different training images by implementing an pixel-wise 

inear combination of data ( Zhang et al., 2018 ), it is designed for

mage classification, where soft label is produced for mixed im- 

ge. Directly applying it to polyp segmentation is problematic, be- 

ause the soft label calculated in the vanilla mixup method may 

ield inconsistent category information with the clinical diagno- 

is, which degrades the segmentation performance. Inspired by the 

eta-learning strategy, which has successfully shown to be power- 

ul in learning data-driven policies using the knowledge of valida- 

ion set (meta-data) ( Finn et al., 2017; Wang et al., 2020 ), we pro-

ose Meta-Learning Mixup (MLMix) data augmentation method to 

earn the data-driven interpolation policy of mixed label and gen- 

rate compatible hard label for mixed image. Specifically, the data- 

riven interpolation policy transfers the soft label to an optimal 

ard label and targets to improve the accuracy on the validation 

et. Since the validation set is constructed by manually annotated 

ata, it provides meta-knowledge for interpolation policy learning 

nd guarantees the consistent category information with the clin- 

cal diagnosis. Through the meta-learning strategy, the proposed 

LMix has capability of obtaining the matched segmentation label 

or each augmented mixup image and facilitates the generalization 

bility of segmentation model. 

The second challenge lies in that existing polyp segmentation 

odels treat samples equally in the loss calculation, e.g., cross- 

ntropy loss, ignoring the negative effect caused by the variabil- 

ty of polyps ( Guo et al., 2021b ) in endoscope images. These im-

ges are obtained from different patients, and polyps can locate 

t any spots of the image with different illumination situations 

nd partial obstructions. Such variability prevents neural networks 

rom effectively learning the general patterns of polyps and causes 

hem to get stuck at suboptimal solutions ( Li and Gong, 2017 ). 

hus, it may be beneficial to first train networks on more rep- 

esentative polyp images and regions, and then gradually intro- 

uce more challenging instances. Although the easy-to-hard hier- 

rchical learning strategy has been considered by previous stud- 

es ( Li and Gong, 2017; Qin et al., 2020 ) to prevent the fluctuation

f training procedure, they only select confident samples in im- 

ge level and ignore the class imbalance problem, which is com- 

on in polyp segmentation. In practice, only less than 10% pixels 

elong to the polyp category ( Guo et al., 2021a ), and the imbal-

nced training data cause the polyp category to be heavily under- 

epresented. In contrast to previous studies ( Li and Gong, 2017; Qin 

t al., 2020 ), we recognize that the image- and pixel-level easy-to- 

ard gradual learning schemes address the polyp variability and 

lass imbalance problems from complementary perspectives, i.e., 

ixels with high confidence scores in those unselected complex 

mages also play an important role in model optimization. There- 

ore, we consider that jointly performing both easy-to-hard grad- 

al learning aspects could impart their individual advantages and 

ubsequently improve the segmentation performance, and thus, we 

evise a Confidence-Aware Resampling (CAR) strategy for polyp 

egmentation. Specifically, images are firstly ranked according to 

he image-level confidence (overlap scores with ground truth, hor- 

zontal axis in Fig. 1 ) in ascending order. Considering there exist in- 

ormative pixels in those unselected complex images, we also rank 

ixels according to the pixel-level confidence (classification accu- 

acy, vertical axis in Fig. 1 ). The proposed CAR strategy adaptively 

elects confident images ( Fig. 1 (a)) and pixels ( Fig. 1 (b, c)) to grad-

ally mine informative samples and enable robust training. More- 
2 
ver, the proportions of selected foreground and background pix- 

ls are assigned individually based on the class distribution prior 

nowledge to ensure the balance of the selected class distribution. 

Our main contributions can be summarized as follows: 

• We propose a novel MLMix data augmentation method to en- 

large the limited annotated training dataset for promoting the 

generalization ability of the optimized segmentation model. To 

our best knowledge, the proposed MLMix represents the first 

effort that leverages meta-learning strategy to gain clinical di- 

agnosis knowledge from validation data, so as to generate com- 

patible hard label for mixed image in a data-driven manner. 
• We further develop a CAR strategy to enable the robust training 

of polyp segmentation model and accelerate the learning pro- 

cess, which adopts the easy-to-hard gradual learning scheme in 

both image and pixel levels. Moreover, the class prior knowl- 

edge is integrated in the training procedure to rebalance the 

data distribution for mitigating the class imbalance problem. 
• The effectiveness and generality of MLMix and CAR strategy are 

validated on the EndoScene dataset ( Vázquez et al., 2017 ) and 

WCE polyp dataset. Extensive experiments show that our ap- 

proach outperforms state-of-the-art polyp segmentation meth- 
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The rest of the paper is organized as follows: Section 2 re- 

iews the related work of polyp segmentation, mixup and resam- 

ling/reweighting strategy. Then the proposed methods including 

LMix and CAR strategy are illuminated in Section 3 . The ex- 

erimental results are analyzed in Section 4 , and we conclude in 

ection 5 . 

. Related work 

.1. Deep learning for polyp segmentation 

Owing to the excellent feature representation capacity, deep 

earning methods based on CNNs have been widely employed for 

utomatic polyp detection and segmentation ( Vázquez et al., 2017; 

hou et al., 2018; Akbari et al., 2018; Yuan et al., 2018; Guo and

uan, 2019; Jha et al., 2019; Fang et al., 2019; Qadir et al., 2019;

ickstrøm et al., 2020; Zhang et al., 2020a; Jia et al., 2020; Fan 

t al., 2020; Nguyen et al., 2020; Yang et al., 2020; Lin et al., 

020; Wu et al., 2021; Liu et al., 2021; Chen et al., 2021; Jha 

t al., 2021; Guo et al., 2021a; Yang et al., 2021; Guo et al., 

021b ). Vázquez et al. (2017) made the first attempt to integrate 

he deep learning algorithm in polyp segmentation by utilizing a 

ully convolutional network (FCN), which enables deep neural net- 

ork to make spatially dense predictions. Qadir et al. (2019) in- 

roduced Mask R-CNN to simultaneously perform polyp detection 

nd segmentation. In order to prevent fragmentary predictions, 

ia et al. (2020) extended FCN by introducing a region proposal 

tage. Wickstrøm et al. (2020) leveraged the pooling indices de- 

ived in the max-pooling operator of an encoder to implement 

on-linear upsampling in the decoder, thus preserving the spa- 

ial dependence. To further diminish the semantic discrepancies 

etween deep and shallow layers, Zhou et al. (2018) designed 

he UNet++ network architecture with nested skip connections 

mong different layers. Furthermore, Fang et al. (2019) introduced 

 boundary constraint to make the segmentation model more sen- 

itive to predictions around polyp boundaries. Recently, increas- 

ng number of studies are attempting to aggregate effective in- 

ormation for polyp segmentation ( Zhang et al., 2020a; Fan et al., 

020 ). For example, Zhang et al. (2020a) designed a context selec- 

ion based segmentation framework to dynamically combine global 

nd local contextual information for regional contrast reasoning. 

an et al. (2020) proposed a parallel reverse attention network to 

ecurrently mine the relationship between polyp area and bound- 

ries. 

Although these polyp segmentation models have made signifi- 

ant progress, due to the limited annotation data and huge polyp 

ariability, they may still perform unsatisfactorily in clinical appli- 

ations. 

.2. Mixup 

Correctly delineating polyp regions is challenging for clinicians 

ue to the various shapes, textures, and illumination situations ex- 

ibited in endoscope images, and even professional clinicians may 

ield discrepant annotation results. Hence, high-quality annotated 

atasets are scarce in polyp segmentation tasks. Fortunately, data 

ugmentation provides a convenient way for enriching the train- 

ng samples and can significantly facilitate the generalization abil- 

ty of deep CNN models ( Zhang et al., 2018; Li et al., 2019; Chai-

anya et al., 2019; Wang et al., 2019; Berthelot et al., 2019; Verma 

t al., 2019; Hendrycks et al., 2020; Guo et al., 2021a ). The re-

ently proposed mixup performs convex combinations on images 

nd labels to produce noticeably dissimilar data to original im- 

ge ( Zhang et al., 2018 ). Inheriting its excellent properties, increas- 

ng interest has been paid to employing and amending mixup in 

iverse applications ( Li et al., 2019; Wang et al., 2019; Berthelot 
3 
t al., 2019; Verma et al., 2019 ). Li et al. (2019) proposed an asym-

etric mixup that could explicitly keep the decision boundary of 

lassifier close to the majority category and stay away from the 

inority category, thus alleviating the class imbalance problem. 

o reduce distribution mismatch, Berthelot et al. (2019) assigned 

ow-entropy pseudo labels for unlabeled examples and then im- 

lemented mixup between labeled and unlabeled images. More- 

ver, Verma et al. (2019) devised manifold mixup to exploit the 

nterpolation at hidden representations, thereby optimizing neural 

etworks with smoother decision boundaries at different feature 

evels. 

However, directly employing the mixup algorithm, which was 

esigned for whole-image classifications, to the polyp segmenta- 

ion task is problematic, because mixup produces soft label and 

gnores the varying degrees of CRC. Our previous study ( Guo et al., 

021a ) tackled this issue by devising a confidence-guided mani- 

old mixup to enrich training data in both image and feature levels. 

erein, we present a novel alternative, coined MLMix, to generate 

ompatible hard segmentation labels for mixed endoscope images 

n a data-driven manner. 

.3. Resampling or reweighting strategy 

To address the biased data problems, such as the variability of 

amples and class imbalanced data distribution, resampling and 

eweighting strategies have been well studied in the literature ( Li 

nd Gong, 2017; Lin et al., 2017; Jiang et al., 2018; Li et al., 2019;

i and Vasconcelos, 2020; Qin et al., 2020; Cai et al., 2020 ). On

he one hand, self-paced learning (SPL) progressively incorporates 

ncreasing number of images in an easy-to-hard manner to en- 

ble a robust model that learned with sample variability ( Li and 

ong, 2017 ). Qin et al. (2020) measured the prostate segmentation 

ifficulty for all images and gradually selected the relatively con- 

dent samples for segmentation model optimization. Recently, au- 

hors in ( Jiang et al., 2018; Cai et al., 2020 ) utilized the multiple-

ayer perception to automatically assign a large weighting coeffi- 

ient for an easy sample. The strategy of prioritizing training on 

onfident samples ( Li and Gong, 2017; Jiang et al., 2018; Cai et al., 

020; Qin et al., 2020 ) exhibited superior performance in real 

roblems involving sample variability and noisy labeled data. On 

he other hand, some methods ( Lin et al., 2017; Li et al., 2019; Li

nd Vasconcelos, 2020 ) emphasized samples with large loss values 

o mitigate the class imbalance problem, because they can adap- 

ively assign low weights for the majority class instances and pe- 

alize the minority class instances with relatively high loss values, 

hereby ensuring a balanced loss calculation. 

Nevertheless, these methods cannot simultaneously deal with 

he variability of samples and imbalanced data distribution in 

olyp segmentation. In contrast, the proposed CAR strategy adopts 

n easy-to-hard gradual learning scheme and leverages class prior 

nowledge to tackle the aforementioned two biased data problems. 

. Method 

Fig. 2 illustrates the overall framework of the proposed model. 

irst, the proposed MLMix (§3.1 ) is utilized to augment the original 

ataset D = (X , Y) as ˜ D = ( ̃  X , ̃  Y ) , enriching the limited training

ata. Then, the original and augmented datasets are combined and 

ed into the segmentation net, which is denoted as f w 

(·) and pa- 

ameterized by w . The proposed CAR strategy (§3.2 ) progressively 

elects the confident image set S img with higher overlap scores and 

he class balanced pixel set S pix with higher classification confi- 

ence scores, and it simultaneously utilizes them together to re- 

rain the segmentation net. With the easy-to-hard training strat- 

gy, the segmentation net can accelerate the learning convergence, 
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Fig. 2. Illustration of the proposed segmentation model with Meta-Learning Mixup (MLMix) and Confidence-Aware Resampling (CAR) strategy. Step 1–4: meta steps to obtain 

the compatible hard label ̃  y i for mixed image ̃  x i . Step 5: optimization of segmentation net with CAR strategy on MLMix data and original data. 

Fig. 3. Each column presents (a) mixup image, (b) mixup label ( Zhang et al., 2018 ), 

(c) asymmetric mixup label ( Li et al., 2019 ), (d) MLMix label. 
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mprove the generalization capability, and rebalance the data dis- 

ribution. During the inference phase, test images are directly fed 

nto the segmentation net to obtain their predictions. 

.1. Meta-learning mixup (MLMix) 

Mixup is an effective data augmentation algorithm that can 

romote the model generalization ability for image classification 

ask. It generates extra training samples through convex combina- 

ions ( Zhang et al., 2018; Guo et al., 2021a ). Given randomly sam-

led image-label pairs (x i , y i ) and (x j , y j ) from the training data,

he augmented mixup image and the corresponding mixup la- 

el are computed via ˜ x i = λx i + (1 − λ) x j and 

˜ y i = λy i + (1 − λ) y j ,

here λ is drawn from a beta distribution. Directly employing the 

ixup, which was designed for image classification, to the polyp 

mage segmentation model is problematic, because it produces soft 

abels and provides inconsistent category information with clinical 

iagnosis, as shown in Fig. 3 (b). In the clinical diagnosis, appear- 

nces of polyps are evidently different for varying degrees of CRC. 

lthough mixing malignant polyp regions with normal ones will 
4 
eaken the feature representation of polyp and obscure the lesion 

oundaries (just like polyp at its early stage), the corresponding 

rea should be diagnosed as a polyp in clinical. To remedy this in- 

onsistent diagnosis issue, asymmetric mixup ( Li et al., 2019 ) in- 

roduces a margin coefficient m to threshold the mixup label, and 

he modified hard label is denoted as follow: 

 

 i = δ(λy i + (1 − λ) y j > m ) , (1) 

here δ(·) = 1 if the condition is fulfilled, and otherwise δ(·) = 0 .

he mixed region, with a label value above a certain margin m , 

hould be classified into the polyp category. The Fig. 3 (c) column 

epresents the asymmetric label with m = 0 . 3 , and it is observed

hat applying a uniform margin coefficient may yield inaccurate 

ard labels, as illustrated in the upper and lower rows. Hence, 

earning a data-driven hard label for polyp segmentation will be 

eneficial. To this end, we incorporate the meta-learning strategy 

nd propose MLMix, which generates compatible label for mixed 

mage in an online fashion. Our intuition is that the meta-learning 

trategy learning to gain clinical diagnosis knowledge from valida- 

ion data (i.e., manually annotated data) can provide instructive su- 

ervision for refining the interpolation policy of mixed label in a 

ata-driven manner. 

Considering the characteristics of unclear polyps may be over- 

helmed by normal regions and the malignant polyp mixed with 

ormal tissues may still belong to polyp, we first decouple the 

ard label of ˜ y i in Eq. (1) into 
{

y i , y j , y i ∪ y j 
}

t o compr ehensiv ely 

over all cases of hard labels. Then, the general idea of MLMix is 

o select the most appropriate hard label for mixed image. As illus- 

rated in Fig. 2 , MLMix involves three parameters, i.e., λx , λy i , λy j , 

nd the augmented MLMix dataset is ˜ D = ( ̃  X , ̃  Y ) = { ( ̃  x i , ̃  y i ) } N i =1 : 

 

 i = λx x i + (1 − λx ) x j , 

 

 i = λy i y i + λy j y j + (1 − λy i − λy j )(y i ∪ y j ) , (2) 

here λx is randomly drawn from the beta distribution, and λy i , 

y j are weighting factors for selecting the correct hard label. 

Given a mixed image with randomly sampled λx , interpolation 

olicies of λy i and λy j are optimized using the meta-learning strat- 

gy (step 1–4 in Fig. 2 ), so as to obtain the compatible hard la-
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Algorithm 1 : Optimization . 

Input: Training data D = (X , Y) = { (x i , y i ) } N i =1 , validation data 

D v = (X v , Y v ) = { (x v , y v ) } N v v =1 

Parameters: Segmentation net ( w ), λx , λy i , λy j 

1: Initialize w with pre-trained model, randomly sample λx from 

beta distribution and initialize λy i = λy j = 

1 
3 

2: for t=1 to T do 

3: Apply mixup on randomly selected pairs of images and ob- 

tain their corresponding labels with uniformly initialized 

λy i , λy j via Eq. (2), which are denoted as ˜ D = ( ̃  X , ̃  Y ) = 

{ ( ̃  x i , ̃  y i ) } N i =1 . 

4: Optimize the meta net ( w 

t ) on 

˜ D to ̂ w 

t+1 via Eq. (3) (step 1, 

2 in Figure 2) 

5: Optimize weighting factors λy i and λy j on D v via Eq. (4) 

(step 3, 4 in Figure 2) 

6: Update MLMix label ˜ y i via Eq. (5) to reconstruct ˜ D 

7: Optimize the segmentation net ( w 

t ) on reconstructed {D, ̃  D } 
to w 

t+1 (step 5 in Figure 2) 

8: end for 

9: return w = w 

T +1 

n

t

−  

c

T

s

t

t

t

s

l

p

a

b

Q

m

w

[

a

i

c

m

i  

s

r

m

w

[  

t

a

d

i

a

el for each mixed image and ensure the unbiased model opti- 

ization. The basic intuition behind this data-driven hard label 

erivation is that the optimal interpolation policies should target 

o minimize the segmentation loss on validation data ( Zhang et al., 

020b ) and promote the generalization ability of model. Specifi- 

ally, in each training iteration, a meta net is copied from the orig- 

nal segmentation net, and a mini-batch of MLMix samples is for- 

ard passed through the meta net (step 1 in Fig. 2 ). Then, the pa-

ameters in the meta net are updated by moving the current w 

t 

long the descent direction of segmentation loss as follows (step 2 

n Fig. 2 ): 

ˆ 
 

t+1 (λy i , λy j ) = arg min 

w 

N ∑ 

i =1 

L ( ̃  y i , f w 

t ( ̃  x i ) ) , (3) 

here MLMix label ˜ y i is a function of parameters λy i and 

y j that are differentiable. L (·) indicates the cross-entropy loss. 

imilar to well-known model-agnostic meta-learning (MAML) 

 Finn et al., 2017 ) with second-order back-propagation, we opti- 

ize the weighting factors λy i and λy j by minimizing the segmen- 

ation loss on validation data (i.e., original data without mixup) 

ith the feedback from the updated parameters ˆ w 

t+1 (step 3 and 

 in Fig. 2 ). In our implementation, we calculate the gradients of 

y i , λy j and pick out the most compatible hard label by referring 

o the adjusted weighting factors ̂ λy i , 
̂ λy j : 

̂ λy i = λy i − η
∂ 

∂λy i 

E [ L ( y v al , f ̂ w 

t+1 (x v al ) ) ] , 

̂ 

y j = λy j − η
∂ 

∂λy j 

E [ L ( y v al , f ̂ w 

t+1 (x v al ) ) ] , (4) 

here η is learning rate. (x v al , y v al ) represents an image-label pair 

n validation set. Then, we select the maximum weighting factor 

among ̂ λy i , 
̂ λy j , 1 − ̂ λy i − ̂ λy j ), and the corresponding hard label is 

egarded as the final MLMix label: 

 

 i = 

⎧ ⎨ 

⎩ 

y i , 
̂ λy i is maximum ;

y j , 
̂ λy j is maximum ;

y i ∪ y j , otherwise . 

(5) 

onsequently, the optimal hard label is derived with respect to 

he validation data performance improvement. Different from the 

anilla mixup obtaining soft label from the prior beta distribution, 

LMix utilizes the second-order back-propagation to obtain the 

ompatible hard label for each mixed image, thereby facilitating 

he generalization ability of segmentation net. 

After the meta steps, each mixed image is equipped with an 

ptimized hard label in an online fashion. Since the hard label 

earns from the meta-knowledge in the validation data, it can pro- 

ide the consistent category information with clinical diagnosis, 

nd the augmented data can be utilized for the unbiased training 

f segmentation net (step 5 in Fig. 2 ). The learning procedure of 

LMix is summarized in Algorithm 1 . As illustrated in Fig. 3 (d), 

ur MLMix label provides precise category information for polyp 

egmentation. 

.2. Confidence-aware resampling (CAR) strategy 

With the augmented and original datasets, the pixel-level cross- 

ntropy loss and image-level Jaccard loss are widely utilized to 

ptimize the segmentation models ( Guo et al., 2021a ). Specifi- 

ally, the image-level loss between the predicted area and the 

round truth polyp area is calculated by L img = 

1 
N 

∑ N 
i =1 L 

i 
img 

= 

1 
N 

∑ N 
i =1 (1 − p i y i 

p i + y i −p i y i 
) , where p i = f w 

(x i ) . (x i , y i ) refers to i th

olyp image and its label, and N is the total number of 

mages. Define j as the position of pixel and M 

c as the 
5 
umber of pixels in class c, then the pixel-level classifica- 

ion errors are calculated by L pix = 

1 
N×M 

∑ C 
c=1 

∑ N 
i =1 

∑ M 

c 

j=1 L 

c,i, j 
pix 

= 

1 
N×M 

∑ C 
c=0 

∑ N 
i =1 

∑ M 

c 

j=1 y 
c 
i j 

log p c 
i j 

, where M = M 

0 + M 

1 . c = 0 indi-

ates the normal class and c = 1 represents the class of polyp. 

hen, the final objective function for segmentation can be repre- 

ented as L = L img + L pix . However, this objective function treats 

raining images and pixels equally; thus, the learning procedure 

ends to become unstable with the variability of polyp images and 

he outliers in MLMix data. Thereby, the learning procedure gets 

tuck in the local optima. Moreover, the segmentation model may 

earn an insufficient representation in the minor class. 

To remedy these drawbacks, we propose CAR strategy that com- 

rises an easy-to-hard gradual learning scheme and joints image- 

nd pixel-level optimization for hierarchical learning and class re- 

alancing. For the image-level CAR, we follow ( Li and Gong, 2017; 

in et al., 2020 ) and modify the objective function of L img as 

in 

u , w 

1 

N 

( 
N ∑ 

i =1 

u i L 

i 
img − λimg 

N ∑ 

i =1 

u i ) , (6) 

here −λimg 

∑ N 
i =1 u i is the self-paced regularizer. u = 

 

u 1 , u 2 , . . . , u N ] ∈ R 

N , s.t. u i ∈ { 0 , 1 } are weights of training images, 

nd λimg is the age parameter that controls the number of selected 

mages and regularizes the learning pace. 

In the unselected complex images, there are pixels with high 

onfidence scores, which also play an important role in the seg- 

entation net optimization. Instead of merely selecting confident 

mages in ( Li and Gong, 2017; Qin et al., 2020 ), we additionally

elect pixels based on pixel-level loss in an easy-to-hard way to 

etrain the segmentation net, which is formulated as 

in 

v , w 

1 

N × M 

( 
C ∑ 

c=0 

N ∑ 

i =1 

M 

c ∑ 

j=1 

v c i j L 

c,i, j 
pix 

−
C ∑ 

c=0 

λc 
pix 

N ∑ 

i =1 

M 

c ∑ 

j=1 

v c i j ) , (7) 

here −∑ C 
c=0 λ

c 
pix 

∑ N 
i =1 

∑ M 

c 

j=1 v c i j 
is the self-paced regularizer. v = 

 v 11 , v 12 , . . . , v NM−1 , v NM 

] ∈ R 

N×M , s.t. v i ∈ { 0 , 1 } are weights of

raining pixels, and λc 
pix 

is the age parameter that controls the 

mount of selected pixel in cth class. To rebalance the selected 

ata distribution during the training process and alleviate the class 

mbalance problem, we incorporate the class prior knowledge by 

ssigning different λc 
pix 

for each class. 
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Since the loss derivation of the segmentation net often fluctu- 

tes at the early training stage, it is hard to manually set initial 

img , λpix as well as the corresponding increasing paces ( Li and 

ong, 2017 ). A feasible way is searching the solution path with 

espect to the number of images and pixels involved in training. 

pecifically, L img and L pix are firstly sorted across all images and 

ixels in ascending orders. Thus, we can select reliable images 

nd pixels with high confidence according to the penalty propor- 

ion parameters r img , r 0 
pix 

, r 1 
pix 

, which progressively vary from low 

o high. Further, we dynamically adjust the proportion parameters 

ased on the segmentation performance, which is estimated from 

he overlap score Ac between predictions and labels in the train- 

ng data. At the tth epoch, the proportion parameters are adjusted 

ccording to: 

r img + = α, r 0 
pix 

+ = β, r 1 
pix 

+ = γ , Ac > A t−1 ;
r img , r 

0 
pix 

, r 1 
pix 

, otherwise . 
(8) 

nly when the overlap score of the current epoch Ac surpasses 

he accumulated score A t−1 in the previous epochs, the proportion 

arameters will increase by predefined update steps ( α, β, γ ) to 

ncorporate more credible images and pixels. Otherwise, the pro- 

ortion parameters remain unchanged to prevent the segmentation 

et from crashing with overwhelming low-quality samples. 

We alternatively optimize Eqs. (6) and (7) with respect to u , v 

nd w . More specifically, the optimization strategy is summarized 

n Algorithm 2 

lgorithm 2 : Optimization . 

nput: Training data {D, ̃  D } = { (x i , y i ) } N i =1 

arameters: Segmentation net ( w ) 

1: Initialize w and the accuracy of training data A 0 = 0 

2: Initialize proportion parameters r img = 0 . 2 , r 0 
pix 

= r 1 
pix 

= 0 . 1 

3: for t=1 to T do 

4: Implement MLMix to construct {D, ̃  D } , which are utilized to 

train the model in current iteration. 

5: Update u and v via Eq. (9) and Eq. (10) to construct S img and

S pix . 

6: Update w in the segmentation model with resampled {
S img , S pix 

}
via Eq. (11). 

7: Calculate Ac and the accumulated accuracy A t = 0 . 5 × (Ac −
A t−1 ) + A t−1 . 

8: Update r img , r 
0 
pix 

, r 1 
pix 

according to Eq. (9). 

9: end for 

0: return w = w 

∗

.2.1. Update u with w fixed 

Using the alternating convex optimization strategy ( Li and 

ong, 2017 ), for fixed w , the closed-form solution of u 

∗ can be eas-

ly calculated by 

 

∗
i = 

{
1 , L 

i 
img 

� λimg ;
0 , otherwise . 

(9) 

ntuitively, when updating the weight variable u with fixed w , an 

mage is selected ( u ∗ = 1 ) when its loss is smaller than λimg . 

.2.2. Update v with w fixed 

For fixed w , the closed-form solution v ∗ is 

 

∗
i j = 

{
1 , L 

c,i, j 
pix 

� λc 
pix 

;
0 , otherwise . 

(10) 

imilarly, a pixel is selected ( v ∗ = 1 ) when its loss is smaller than

pix of its corresponding class. However, if pixels from different 

lasses are treated equally, model tends to be biased towards the 
6 
ackground class and ignores some polyp regions. To tackle this is- 

ue, we propose to assign relatively larger λ1 
pix 

for polyp class and 

maller λ0 
pix 

for background class; thus, the update step γ should 

e set to be larger than β . Therefore, CAR strategy can encode the 

lass prior knowledge to balance data involved in the training pro- 

edure. 

.2.3. Update w with u , v fixed 

After the eligible images and pixels are selected with the 

xed w , the segmentation network is retrained using the selected 

et 
{
S img , S pix 

}
. Then, the objective function (the summation of 

qs. (6) and (7) ) can be degenerated as the following, 

in 

w 

1 

N 

N ∑ 

i =1 

u 

∗
i L 

i 
img + 

1 

N × M 

C ∑ 

c=0 

N ∑ 

i =1 

M 

c ∑ 

j=1 

v c∗i j L 

c,i, j 
pix 

. (11) 

t is obvious that Eq. (11) assigns different weights for the train- 

ng images and pixels according to their confidences. Thus, we 

an resort to stochastic gradient descent (SGD) and gradient back- 

ropagation methods to optimize parameters w in the segmenta- 

ion net. 

At the beginning of the learning stage, the model is unstable, 

nd only confident images and pixels are involved to learn rep- 

esentative patterns of polyps. With the size of involved training 

amples increasing along with the learning procedure, the model 

s trained with more challenging patterns. This joint image- and 

ixel-level easy-to-hard gradual learning scheme leads to robust 

nd discriminative feature extraction. Moreover, λc 
pix 

for each class 

s assigned based on the class distribution prior knowledge to en- 

ure the balance of the selected class distribution and alleviate the 

lass imbalance problem. Under the alternating optimization of pa- 

ameters (i.e., u , v w ), the objective function in Eq. (11) can itera-

ively decrease to an optimal value. Thus, the segmentation net ac- 

elerates the learning convergence and becomes increasingly sta- 

le. 

. Experiments and results 

.1. Experimental setup 

.1.1. Datasets 

Two polyp image datasets were utilized to verify the effective- 

ess of the proposed methods. 

EndoScene dataset. This benchmark dataset ( Vázquez et al., 

017 ) includes 912 colonoscopy images with corresponding pixel- 

ise annotations. We follow the standard setup in ( Vázquez et al., 

017 ) with the constraint that images captured from one patient 

annot be in different sets, and obtain 547 training, 183 validation, 

82 test colonoscopy images. 

WCE polyp dataset. Our private polyp dataset consists of 541 

CE images. They are collected through the Medtronics Pillcam 

CE in the Prince of Wales Hospital. The ground truths of polyp 

reas were depicted by two professional experts. We randomly 

plit this dataset for fourfold cross-validation and keep data prepa- 

ation methods same across different experiments. 

.1.2. Implementation 

The proposed method was implemented with the PyTorch li- 

rary. DeepLabv3+ ( Chen et al., 2018 ) was adopted as the backbone 

f segmentation net. ResNet-101 ( He et al., 2016 ) was leveraged 

s the encoder and initialized with the pre-trained parameters ob- 

ained on ImageNet dataset. We utilized polynomial learning rate 

cheduling, where the initial learning rate is 0.001 and the max- 

mum epoch number is 500. In each iteration, the batch size is 

mpirically set as 8. The update steps of penalty proportion pa- 

ameters α, β , and γ in CAR strategy were set to 2 , 1 , and 
500 500 
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Table 1 

Polyp segmentation results in comparison with state-of-the art methods. 

Datasets Methods Dice (%) Jac (%) Acc (%) F2-score (%) Sen (%) Spe (%) 

Vázquez et al. (2017) 80.099 72.320 96.296 79.061 78.986 99.439 

Zhou et al. (2018) 79.842 71.756 95.885 80.252 82.492 98.622 

Fang et al. (2019) 81.987 73.654 96.438 81.859 82.630 99.306 

EndoScene Qadir et al. (2019) 84.145 77.369 96.877 83.433 84.575 99.328 

Wickstrøm et al. (2020) 81.867 74.542 96.643 81.731 82.130 99.286 

Zhang et al. (2020a) 85.417 78 . 955 97 . 020 84.483 84.939 99.507 

Fan et al. (2020) 85 . 501 78.077 96.861 84 . 845 84 . 979 99 . 501 

Ours 87.450 80.808 97.242 88.143 90.173 98.904 

Vázquez et al. (2017) 73.422 ±1.304 64.113 ±0.808 97.969 ±0.355 73.048 ±1.644 73.562 ±2.199 99.010 ±0.321 

Zhou et al. (2018) 80.811 ±1.791 72.326 ±1.426 98.265 ±0.337 80.808 ±1.850 81.273 ±1.916 99.165 ±0.170 

Fang et al. (2019) 75.106 ±0.662 65.130 ±0.881 97.118 ±0.574 74.556 ±0.626 74.960 ±0.877 99.306 ±0.132 

WCE Qadir et al. (2019) 82.927 ±1.342 74.096 ±1.513 98.188 ±0.165 84.031 ±1.461 85.847 ±1.689 98.580 ±0.304 

Wickstrøm et al. (2020) 78.103 ±2.778 69.502 ±2.289 98.248 ±0.243 78.033 ±2.389 78.576 ±2.103 99.162 ±0.094 

Zhang et al. (2020a) 85.619 ±0.741 77.709 ±0.816 98.561 ±0.134 85.839 ±1.013 86.576 ±1.336 99.024 ±0.293 

Fan et al. (2020) 84.131 ±1.291 74.525 ±1.240 98.404 ±0.163 85.935 ±1.705 87.593 ±2.016 98.859 ±0.256 

Ours 86.453 ±1.070 78.007 ±1.188 98.562 ±0.118 89.222 ±1.090 91.941 ±0.975 98.619 ±0.185 
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500 , respectively. To enrich the limited training samples, we em- 

loyed online data augmentations, such as random rotation and 

rop. The augmented images were then resized to the resolution 

f 256 × 256 for training. 

.1.3. Evaluation metrics 

The segmentation performance was evaluated by six com- 

only utilized metrics, i.e., Dice , Jaccard score ( Jac), accuracy ( Acc), 

2-score , sensitivity ( Sen ) and specificity ( Spe ). For all the eval-

ation metrics, a higher score indicates a better segmentation 

erformance. Best and second best results are highlighted and 

nderlined . 

.2. Results on EndoScene dataset 

We first assessed the performance of the proposed approach 

 row 7) and compared it with state-of-the-art polyp segmentation 

ethods ( Vázquez et al., 2017; Zhou et al., 2018; Wickstrøm et al., 

020; Fang et al., 2019; Qadir et al., 2019; Zhang et al., 2020a; Fan

t al., 2020 ). The comparison results on the EndoScene dataset are 

isted in Table 1 . For a fair comparison, we implemented their net- 

ork architectures and utilized the same online data preparation 

ethods. It is observed that the proposed method shows superior 

erformance with increments of 7.351%, 7.608%, 5.463%, 3.305%, 

.583%, 2.033%, 1.949% in Dice , 11.187%, 7.681%, 7.543%, 5.598%, 

.043%, 5.234%, 5.194% in Sen compared with methods ( Vázquez 

t al., 2017; Zhou et al., 2018; Fang et al., 2019; Qadir et al., 2019;

ickstrøm et al., 2020; Zhang et al., 2020a; Fan et al., 2020 ), re-

pectively. Among the evaluation metrics, Sen score indicates the 

roportion of polyp pixels that are accurately identified, which is 

ritical in the clinical practice. Since the area of polyp region is 

maller than that of normal one, previous methods ( Vázquez et al., 

017; Zhou et al., 2018; Wickstrøm et al., 2020; Fang et al., 2019; 

adir et al., 2019; Zhang et al., 2020a; Fan et al., 2020 ) are prone

o categorize the polyp pixel as normal one, which usually leads 

o a poor sensitivity and a relatively high specificity score. On the 

ontrary, the significant improvement in Sen score reveals that the 

roposed method has an inherent ability of tackling the class im- 

alance problem. 

We visualized four typical polyp images and compared the cor- 

esponding segmentation predictions of methods ( Vázquez et al., 

017; Zhou et al., 2018; Wickstrøm et al., 2020; Fang et al., 2019; 

adir et al., 2019; Zhang et al., 2020a; Fan et al., 2020 ) and our

ethod in Fig. 4 . It is obvious that existing state-of-the-art meth- 

ds under-segment regions with low contrast characteristics ( rows 

 − 2 in Fig. 4 ) and different illumination conditions ( row 3 in
7 
ig. 4 ). In contrast, the proposed method can make accurate pre- 

ictions in those error-prone regions. Additionally, our model is 

ore resistant against specular reflection and outperforms other 

ethods in manifested reflection regions ( row 4 in Fig. 4 ). 

.3. Results on WCE polyp dataset 

We then performed the proposed MLMix data augmentation 

ethod and CAR strategy on the WCE polyp dataset, and exhib- 

ted the corresponding segmentation results with mean and stan- 

ard deviation of evaluation metrics, as illustrated in Table 1 . It 

s obvious that the proposed method shows superior segmenta- 

ion performance compared with other polyp segmentation meth- 

ds ( Vázquez et al., 2017; Zhou et al., 2018; Fang et al., 2019; Qadir

t al., 2019; Wickstrøm et al., 2020; Zhang et al., 2020a; Fan et al., 

020 ) with increments of 13.031%, 5.642%, 11.347%, 3.526%, 8.350%, 

.834%, 2.322% in Dice score. Fig. 4 ( rows 5 − 8 ) visualizes segmen-

ation predictions of WCE images for the purpose of quantitative 

omparison. Due to the relatively low resolution of WCE images, 

oundaries of polyp regions are usually blurred ( rows 4 − 5 ), and 

 high degree of apparent similarity share between polyp and nor- 

al tissues ( rows 6 − 7 ). In this scenario, other methods are inca- 

able of identifying polyp regions accurately and result in missing 

etections, while our approach still performs well. Both quantita- 

ive and qualitative evaluations on two polyp datasets demonstrate 

he superiority of the proposed method. 

.4. Ablation study of MLMix 

To analyze the effectiveness of the proposed MLMix data aug- 

entation method, we conducted ablation experiments to compare 

t with other mixup related data augmentation methods, includ- 

ng mixup ( Zhang et al., 2018 ), asym. mixup (asymmetric mixup) 

 Li et al., 2019 ), CGMMix ( Guo et al., 2021a ). Mixup conducts data

ugmentation through convex combination on images and derives 

oft labels. Asym. mixup further applies threshold to obtain hard 

abel for medical image segmentation. Our previous CGMMix con- 

iders the varying degrees of CRC and incorpotates a confidence- 

uided manifold mixup in both image and feature levels. The com- 

arison results recorded in rows 3 − 6 of Table 2 demonstrate that 

he proposed MLMix performs favorably against other data aug- 

entation methods ( Zhang et al., 2018; Li et al., 2019; Guo et al., 

021a ). In particular, MLMix achieves a prominent Jac of 78.88%, 

hich shows increments of 2.31%, 1.44%, 0.47% in comparison to 

 Zhang et al., 2018; Li et al., 2019; Guo et al., 2021a ), respectively.

his result reveals the good capability of MLMix to enrich the lim- 

ted training dataset for polyp segmentation. Moreover, the im- 
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Fig. 4. Typical examples of segmentation results on the EndoScene dataset ( rows 1 − 4 ) and the WCE polyp dataset ( rows 5 − 8 ). Each row presents (a) input image, seg- 

mentation predictions of models (b) FCN ( Vázquez et al., 2017 ), (c) UNet++ ( Zhou et al., 2018 ), (d) SFA ( Fang et al., 2019 ), (e) Mask R-CNN ( Qadir et al., 2019 ), (f) SegNet 

( Wickstrøm et al., 2020 ), (g) ACSNet ( Zhang et al., 2020a ), (h) PraNet ( Fan et al., 2020 ), (i) ours and (j) ground truth. 

Table 2 

Ablation studies for MLMix on EndoScene. 

Methods Dice Jac Acc F2 Sen Spe 

Baseline 82.52 74.93 96.44 82.02 82.30 99.31 

w/ Overlap mixup 83.07 75.14 96.52 83.00 83.71 99.16 

w/ Mixup ( Zhang et al., 2018 ) 83.55 76.51 96.64 83.08 83.60 99.39 

w/ Asym. mixup ( Li et al., 2019 ) 84.69 77.44 96.73 84.63 85.42 99.33 

w/ CGMMix ( Guo et al., 2021a ) 85.43 78.41 96.89 85.24 85.79 99.45 

w/ MLMix (Ours) 85.92 78.88 96.94 85.70 86.33 99.35 

Ours 87.45 80.81 97.24 88.14 90.17 98.90 
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rovements of MLMix in comparison to baseline ( row 2 ) and over- 

ap mixup ( row 3 , mixed hard label is y i ∪ y j ) demonstrate that in-

orporating meta-learning strategy to learn the data-driven inter- 

olation policy enables the segmentation model to generate com- 

atible hard label for mixed images. It is worth noting that the 

roposed MLMix with CAR strategy ( row 7) significantly boosts 

he segmentation performance of the baseline model, DeepLabv3+ 

 Chen et al., 2018 ), and achieves a Dice of 87.45% and a Sen of

0.17%. The remarkable improvements of 4.93% in Dice and 7.87% 

n Sen compared with the baseline model validate the proposed 

LMix and CAR strategy contribute to the performance gains. 
w

8 
.5. Ablation study of CAR strategy 

To deal with the variability of polyp images and class imbal- 

nce problems, two typical strategies, HLS (hierarchical learning 

trategy) ( Qin et al., 2020 ) and asym. focal loss (asymmetric focal 

oss) ( Li et al., 2019 ), are commonly utilized, as shown in Table 3 .

LS emphasizes confident images to tackle the issue of variable 

raining instances and prevent the negative effect of outliers, while 

sym. focal loss penalizes uncertain instances to alleviate the class 

mbalance problem. Our CAR strategy integrates the confidence in- 

erence and leverages class prior knowledge to simultaneously deal 

ith the aforementioned two data biased problems in polyp seg- 
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Table 3 

Ablation studies for CAR strategy on EndoScene. 

Methods Dice Jac Acc F2 Sen Spe 

Baseline 82.52 74.93 96.44 82.02 82.30 99.31 

w/ HLS ( Qin et al., 2020 ) 84.72 77.65 96.81 84.41 85.07 99.39 

w/ Asym. focal loss ( Li et al., 2019 ) 84.23 77.04 96.76 84.52 85.33 99.33 

w/ CAR (Ours) 86.09 79.26 97.04 86.20 87.49 99.35 

Ours 87.45 80.81 97.24 88.14 90.17 98.90 

Fig. 5. Comparison results of segmentation models trained with different numbers of training images. From left to right, segmentation results are obtained from models (a) 

FCN ( Vázquez et al., 2017 ), (b) UNet++ ( Zhou et al., 2018 ), (c) SFA ( Fang et al., 2019 ), (d) Mask R-CNN ( Qadir et al., 2019 ), (e) SegNet ( Wickstrøm et al., 2020 ), (f) ACSNet 

( Zhang et al., 2020a ), (g) PraNet ( Fan et al., 2020 ), (h) ours. Note that “274 (50%)” indicates 274 images (50 percent of EndoScene training set) are involved for optimization. 

m

c

l

f

L

d

D

d

m

s

v

s

p

r

s

t

a  

o

l

e

c

l

d

w

t

c

s

4

C

m

t

s

W

e

Fig. 6. Dice and Jac curves on EndoScene test data w.r.t. training process. 

Fig. 7. Illustration of the selected images (orange check marks), foreground pixels 

(green regions), and background ones (blue regions) w.r.t. training process (i.e., at 

epoch 1, 100, 200, 300, 400, 500) with the proposed CAR strategy. (For interpreta- 

tion of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 
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entation and shows prominent increments of 1.61%, 2.22% in Jac

ompared with other reweighting methods, HLS and asym. focal 

oss methods. 

Fig. 6 plots the Dice and Jac curves on the test data, under dif- 

erent methods (Baseline, HLS Qin et al., 2020 , asym. focal loss 

i et al., 2019 and the proposed CAR strategy), where the x-axis 

enotes the training epoch. The figure shows two insights. First, 

ice and Jac curves are stable at the later stages of training proce- 

ure. This empirically verifies the convergence of the segmentation 

odels with different strategies. Second, the easy-to-hard learning 

cheme is demonstrated to have capability of accelerating the con- 

ergence since both HSL and CAR strategies converge to a steady 

tate slightly faster than other methods. With the incorporation of 

ixel-level easy-to-hard gradual learning, our CAR strategy is supe- 

ior than HSL that only considers image-level hierarchical learning 

trategy. 

We then illustrate the selected images and pixels at different 

raining stages to visualize the learning schemes of CAR strategy, 

s shown in Fig. 7 . It is observed that at the early learning stage,

nly a small set of confident images and pixels are involved to 

earn representative patterns of polyps. Notably, the involved pix- 

ls of foreground and background classes are relatively balanced in 

omparison to class distribution of original data. Along with the 

earning procedure, more challenging images and pixels are intro- 

uced to train the segmentation. Moreover, since there exist pixels 

ith high confidence scores in those unselected complex images, 

he pixel-level easy-to-hard learning scheme is demonstrated to be 

omplementary to the image-level one within the proposed CAR 

trategy. 

.6. Different numbers of training images 

Sufficient annotated data is crucial for the optimization of deep 

NNs, and can promote the generalization capability of the opti- 

ized segmentation model. To further verify the effectiveness of 

he proposed method, we compared it with state-of-the-art polyp 

egmentation models ( Vázquez et al., 2017; Zhou et al., 2018; 

ickstrøm et al., 2020; Fang et al., 2019; Qadir et al., 2019; Zhang 

t al., 2020a; Fan et al., 2020 ) optimized with different numbers 
9 
f training images. The numbers of training images ranged from 

5% to 100% of the total training set (547 images in EndoScene 

ataset) in increments of 25% proportion, and Fig. 5 shows the seg- 

entation performance in terms of the Dice score. In general, it 

s clear that our method is more stable and consistently performs 

uperior than other methods with different training images, vali- 

ating the robustness of the proposed method. When the training 

ata is scarce (137 images), other segmentation models exhibit a 

harp decline in Dice score with unsatisfactory generalization per- 

ormance. On the contrary, the proposed method shows a favorable 

erformance and achieves significant promotions in comparison to 
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Table 4 

Performance of our method on EndoScene dataset with different segmentation baseline networks. Best results 

are highlighted . 

Methods Dice Jac Acc F2 Sen Spe 

UNet (15 ′ ) ( Ronneberger et al., 2015 ) 76.07 67.12 95.63 75.21 75.76 99.05 

Ours (UNet) 83.20 74.77 96.64 83.96 85.25 99.09 

SegNet (17 ′ ) ( Badrinarayanan et al., 2017 ) 81.87 74.54 96.64 81.73 82.13 99.29 

Ours (SegNet) 84.10 76.76 96.82 84.81 85.96 99.30 

MultiResUNet (20 ′ ) ( Ibtehaz and Rahman, 2020 ) 81.31 73.94 96.62 80.24 80.14 99.46 

Ours (MultiResUNet) 83.36 76.26 96.66 83.65 84.73 99.01 

PraNet (20 ′ ) ( Fan et al., 2020 ) 85.50 78.08 96.86 84.85 84.98 99.50 

Ours (PraNet) 86.77 80.08 97.32 87.91 90.74 98.86 

CS2-Net (20 ′ ) ( Mou et al., 2021 ) 80.06 71.85 96.20 79.55 79.94 99.31 

Ours (CS2-Net) 82.89 75.89 96.70 82.75 83.41 99.35 

DeepLabv3+ (18 ′ ) ( Chen et al., 2018 ) 82.52 74.93 96.44 82.02 82.30 99.31 

Ours (DeepLabv3 + ) 87.45 80.81 97.24 88.14 90.17 98.90 
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ethods ( Vázquez et al., 2017; Zhou et al., 2018; Fang et al., 2019;

adir et al., 2019; Wickstrøm et al., 2020; Zhang et al., 2020a; Fan 

t al., 2020 ) with 29.0%, 21.4%, 18.4%, 18.4%, 36.8%, 4.7%, 3.3% in- 

rements in Dice score. This observation demonstrates the general- 

zation capacity of our approach, and it is highly promising in real 

linical practice where annotated datasets are scarce. 

.7. Comparisons with different backbones 

The proposed MLMix and CAR strategy methods were per- 

ormed with the backbone of DeepLabv3+ ( Chen et al., 2018 ) 

n previous experiments. To explore the generalization capac- 

ty of the proposed methods, we then integrated MLMix and 

AR strategy to other segmentation backbones, including UNet 

 Ronneberger et al., 2015 ), SegNet ( Badrinarayanan et al., 2017 ), 

ultiResUNet ( Ibtehaz and Rahman, 2020 ), PraNet ( Fan et al., 

020 ) and CS2-Net ( Mou et al., 2021 ). Table 4 summarizes the

omparison results with different backbone networks. It is ob- 

erved that our method can greatly facilitate the performance over 

ifferent baseline networks, UNet ( Ronneberger et al., 2015 ), Seg- 

et ( Badrinarayanan et al., 2017 ), MultiResUNet ( Ibtehaz and Rah- 

an, 2020 ), PraNet ( Fan et al., 2020 ), CS2-Net ( Mou et al., 2021 ),

eepLabv3+ ( Chen et al., 2018 ), with increments of 7.65%, 2.22%, 

.32%, 2.00%, 4.04%, 5.88% in Jac and 9.49%, 3.83%, 4.59%, 5.76%, 

.20%, 7.87% in Sen , respectively. The promising promotions reveal 

hat the proposed method is general and could be integrated to 

xisting segmentation models for polyp segmentation. 

. Conclusion 

Automatic polyp segmentation is challenging due to the lack of 

arge annotated datasets, the variability of polyps, and the class 

mbalanced data distribution. In this paper, we propose an MLMix 

ata augmentation method and a CAR strategy to tackle the afore- 

entioned issues. MLMix utilizes the meta-learning strategy to 

ugment the limited training data and yield compatible image- 

abel pairs in a data-driven manner. Further, the proposed CAR 

trategy adopts an easy-to-hard gradual learning scheme at both 

mage and pixel levels, and leverages the class prior knowledge 

o balance the selected class distribution. The comprehensive ex- 

eriments demonstrate the superiority of the proposed methods, 

hich inherently can be transferred to extensive medical image 

egmentation baselines for data augmentation purpose and facil- 

tating the robust feature extraction. 
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