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A B S T R A C T

In recent years, self-supervised learning has emerged as a powerful approach to learning visual representations
without requiring extensive manual annotation. One popular technique involves using rotation transformations
of images, which provide a clear visual signal for learning semantic representation. However, in this work,
we revisit the pretext task of predicting image rotation in self-supervised learning and discover that it tends
to marginalise the perception of features located near the centre of an image. To address this limitation,
we propose a new self-supervised learning method, namely FullRot, which spotlights underrated regions by
resizing the randomly selected and cropped regions of images. Moreover, FullRot increases the complexity of
the rotation pretext task by applying the degree-free rotation to the region cropped into a circle. To encourage
models to learn from different general parts of an image, we introduce a new data mixture technique called
WRMix, which merges two random intra-image patches. By combining these innovative crop and rotation
methods with the data mixture scheme, our approach, FullRot + WRMix, surpasses the state-of-the-art self-
supervision methods in classification, segmentation, and object detection tasks on ten benchmark datasets with
an improvement of up to +13.98% accuracy on STL-10, +8.56% accuracy on CIFAR-10, +10.20% accuracy on
Sports-100, +15.86% accuracy on Mammals-45, +15.15% accuracy on PAD-UFES-20, +32.44% mIoU on VOC
2012, +7.62% mIoU on ISIC 2018, +9.70% mIoU on FloodArea, +25.16% AP50 on VOC 2007, and +58.69%
AP50 on UTDAC 2020. The code is available at https://github.com/anthonyweidai/FullRot_WRMix.
1. Introduction

Unsupervised learning for visual representations, unlike its super-
vised counterpart, eliminates the need for manual labelling, resulting
in substantial savings in time and resources. Self-supervised learn-
ing, a subset of unsupervised learning, has demonstrated remarkable
achievements across various computer vision tasks such as classifi-
cation (Bao, Dong, Piao, & Wei, 2021; Chen, Fan, Girshick, & He,
2020; Chen & He, 2021; Chen, Kornblith, Norouzi, & Hinton, 2020;
Doersch, Gupta, & Efros, 2015; Gidaris, Singh, & Komodakis, 2018;
He, Fan, Wu, Xie, & Girshick, 2020; Mazumder, Singh, & Nambood-
iri, 2021; Misra & Maaten, 2020; Noroozi & Favaro, 2016; Noroozi,
Vinjimoor, Favaro, & Pirsiavash, 2018; Peng, Dong, Bao, Ye, & Wei,
2022; Zbontar, Jing, Misra, LeCun, & Deny, 2021), segmentation (Bao
et al., 2021; Chen & He, 2021; Gidaris et al., 2018; He et al., 2020;
Noroozi et al., 2018; Peng et al., 2022; Wang et al., 2022; Zbontar
et al., 2021), object localisation (Chen, Fan, et al., 2020; Chen &
He, 2021; Doersch et al., 2015; Gidaris et al., 2018; He et al., 2020;
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Misra & Maaten, 2020; Noroozi et al., 2018; Zbontar et al., 2021),
depth estimation (Zhang et al., 2022), and counting (Chen, Zhou, Li,
Wei, & Xiao, 2022). Self-supervision approaches can be categorised
by whether they employ contrastive learning. Contrastive methods
require careful configuration of the objective function (Chen, Kornblith,
et al., 2020; Zbontar et al., 2021) and data augmentation (Chen, Fan,
et al., 2020; Chen & He, 2021; Chen, Kornblith, et al., 2020). In con-
trast, non-contrastive methods can integrate a cross-entropy objective
function and straightforward data augmentation. One non-contrastive
technique in self-supervised learning is predicting an image’s rotation
degree (Gidaris et al., 2018), which is relatively simple and intuitive.
However, when using a fixed transformation centre, the rotation angle
can primarily be inferred from the features near the image’s centre or
border. Consequently, the visual information near the image’s centre
may be neglected and underutilised.

In this paper, we aim to re-evaluate the pretext task of image
rotation and attempt to answer the fundamental question: can we
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systematically incorporate image features from both border and central
regions into the pretext tasks? Two commonly used pretext tasks,
context prediction (Doersch et al., 2015) and jigsaw puzzles (Noroozi &
Favaro, 2016; Noroozi et al., 2018), involve slicing the selected regions
and deducing the relative locations of image patches. These tasks
address the issue of neglecting partial features by considering different
regions of an image. In addition, mixed sample data augmentation
(MSDA) methods such as Mixup (Zhang, Cisse, Dauphin, & Lopez-Paz,
2018), CutMix (Yun et al., 2019), HMix (Park, Yun, & Chun, 2022),
and GMix (Park et al., 2022), have been proposed to prevent deep
learning model from disregarding non-discriminative parts of images.
The MSDA methods blend regions from two different images. Taking
inspiration from these spatial signal processing pretext tasks (Doersch
et al., 2015; Noroozi & Favaro, 2016) and MSDA techniques (Park et al.,
2022; Yun et al., 2019; Zhang et al., 2018), we introduce a novel pretext
task and data mixture method. This new approach involves learning the
rotation degree by observing the geometric transformations of a region
combined with two random circular patches.

The contributions of this work can be summarised as follows:

• We have identified a significant limitation in the conventional
rotation pretext task, which often overlooks features near the
centre of images, akin to visual impairment. To address this, we
propose a novel pretext method called FullRot to provide a more
comprehensive understanding of semantic features.

• The FullRot method enhances the recognition of features in dif-
ferent image regions that were previously overlooked by the
conventional rotation pretext task. This approach improves vision
correction by randomly selecting, cropping, rotating, and resizing
the partial region of images.

• We introduce an augmentation strategy called WRMix, which
enhances models’ feature generalisation and localisation capabil-
ities. WRMix combines two intra-image patches using a weighted
mask, allowing for blending with different magnitudes in different
regions.

• We evaluate the FullRot with WRMix on diverse datasets, in-
cluding STL-10, CIFAR-10, CIFAR-100, Sports-100, Mammals-
45, PAD-UFES-20, ISIC 2018, FloodArea, TikTokDances, PASCAL
VOC 2007, PASCAL VOC 2012, and UTDAC 2020, covering
tasks of classification, semantic segmentation, and object de-
tection. The experimental results demonstrate that the novel
method achieves the best performance, outperforming other self-
supervised learning methods, with the exception of securing the
third position on the CIFAR-100 classification task.

In the subsequent sections, we review relevant works on self-supervised
learning and data mixture in Section 2. We then present the FullRot
and WRMix methods in Section 3, discuss the experimental results in
Section 4, and summarise the discoveries in Section 6.

2. Related works

Self-supervised learning utilises either contrastive or non-
contrastive learning strategies. Contrastive methods, such as SimCLR
(Chen, Kornblith, et al., 2020), MoCo (Chen, Fan, et al., 2020; He
et al., 2020), SimSiam (Chen & He, 2021), and Barlow (Zbontar
et al., 2021) aim to maximise the similarities between two augmented
images from the same source. SimCLR (Chen, Kornblith, et al., 2020),
a simple framework for contrastive learning, employs stochastic data
augmentation to transform samples, generating positive pairs and iden-
tifying the source sample of a pair using contrastive loss. Additionally,
MoCo (momentum contrast) (He et al., 2020) updates the primary
and asymmetric momentum encoders separately. MoCo v2 (Chen, Fan,
et al., 2020) further enhances MoCo by utilising a projection head and
more complex data augmentation. SimSiam (simple siamese) (Chen &
He, 2021) also enhances the asymmetric degree using a stop-gradient
2

operation. Barlow (Zbontar et al., 2021), named after neuroscientist F
H. Barlow and based on SimCLR, applies a distortion operation to
process the input sample and embeds the projection output to prevent
the model from collapsing into a constant. These methods require
careful design of the objective function (Chen, Kornblith, et al., 2020;
Zbontar et al., 2021) and heavily depend on the configurations of
data augmentation (Chen, Fan, et al., 2020; Chen & He, 2021; Chen,
Kornblith, et al., 2020).

In comparison, non-contrastive methods propose pretext tasks to
derive input images and output labels from unlabelled data. These pre-
text tasks can directly utilise objective functions, such as cross-entropy
loss, from supervised learning (Doersch et al., 2015; Gidaris et al.,
2018; Noroozi & Favaro, 2016; Noroozi, Pirsiavash, & Favaro, 2017).
Recently, Bao et al. (2021) and Peng et al. (2022) introduced a token-
based approach known as ‘‘bidirectional encoder representation from
image transformer’’ (BEiT) while He et al. (2022) proposed a pixel-
based method called ‘‘masked autoencoders’’ (MAE) for the restoration
of masked images. However, BEiT and MAE are unsuitable for con-
volutional neural networks (CNNs) due to their dependency on patch
embedding and vision transformer (ViT) encoders. ViT architectures,
compared to CNNs, have insufficient inductive biases (Dosovitskiy
et al., 2021). Therefore, ViT is more sensitive to perturbations and less
able to generalise well to inadequate training data. Although Huang,
Xu, Wang, Wang, and Zhang (2022) introduced a masked image recov-
ery pretext task in convolutional networks, this task relies on a specifi-
cally designed decoder and may bear the expensive computational cost
of recovering each pixel of covered regions.

Rotation is a commonly used data augmentation method in ma-
chine learning and computer vision tasks (Mehta & Rastegari, 2021).
It has been employed as a pretext task in self-supervised learning
by Gidaris et al. (2018). In this approach, a source image is used
to generate four additional images by rotating 0, 90, 180, and 270
degrees separately. To improve image synthesis, the rotation has also
been integrated with GANs as a self-supervised method called SS-
GAN (Chen, Zhai, Ritter, Lucic, & Houlsby, 2019). Another related
work is the rotation-based open set (ROS) proposed by Bucci, Logh-
mani, and Tommasi (2020), which applies image rotation to create
common relations between source and target domains and align their
distributions. Furthermore, using the distance penalty theory, Feng,
Xu, and Tao (2019) introduced semantic feature decoupling to disas-
sociate individual image discrimination from rotation features. Qing,
Zeng, Cao, and Huang (2021) applied rotation transformations to both
labelled and unlabelled data as an auxiliary task to enhance the reg-
ularisation of supervising signals. For better transferable representa-
tions, Liu, Li, Lei, and Shi (2022) utilised rotation self-supervision
for knowledge distillation, incorporating complementary labels (CL)
in an additional task, known as SELF-CL. Moreover, Lim, Lim, Lee,
and Tan (2023) introduced the Self-supervised Contrastive Learning
method (SCL), which combines rotation degree prediction and con-
trastive learning techniques to minimise the distance between each
training image, specifically for few-shot image classification. However,
methods such as SS-GAN (Chen et al., 2019), ROS (Bucci et al., 2020),
semantic feature decoupling (Feng et al., 2019), auxiliary rotation self-
supervision (Qing et al., 2021), SELF-CL (Liu, Li, Lei & Shi, 2022),
and SCL (Lim et al., 2023) utilise multiple self-supervised classification
heads, which presumably consume significant computational resources.

Although the rotation pretext task has inspired various represen-
tation learning research, several problems are still associated with
this self-supervision method. When images have apparent but partial
characteristics near their boundaries (see Fig. 1a), the visual cue after
rotation could cause a lack of awareness of information close to the
boundaries or centres (see Fig. 1b–d). Moreover, the use of rotation
degrees that are not multiples of 90, such as 45, 135, 225, or 315, leads
to a significant drop in the evaluation performance, as Gidaris et al.
(2018) reported. The problem may be caused by conspicuous visual
corners left by rotation transformations without multiples of 90◦ (see

ig. 1ef). This problem will be further discussed in Section 3.1.
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Fig. 1. Rotated image samples generated from (a) original images by (b) vanilla rotation, (c) rotation with the blurred region, (e–f) rotation without multiples of 90◦, and (g–h)
full rotation (FullRot). When comparing (a) and (b), individuals familiar with the objects in the image can likely determine the rotation angle. Even if the image’s boundary (c)
or centre (d) is blurred, estimating the angle becomes more intricate but still feasible. To incorporate features from all regions of an image on the pretext task, FullRot randomly
crops regions from the image. Furthermore, by removing four corners and retaining a circular shape, the image can be rotated by any degree. Otherwise, the corners of images
become apparent features (e-f), shifting the pretext task from predicting angles to searching for corners.
Relative position encompasses two common pretext tasks, con-
text (Doersch et al., 2015) and Jigsaw puzzles (Noroozi & Favaro,
2016). These tasks involve slicing selected regions from an image to
develop a visuospatial representation of patches. Jigsaw++ (Noroozi
et al., 2018) further rearranges tiles extracted from two different images
into two new patch grids to hinder the pretext task and improve
the performance of self-supervised learning. Besides, Kim, Cho, Yoo,
and Kweon (2018) integrated inpainting and colourisation with jig-
saw puzzles to create the ‘‘completing damaged jigsaw puzzles’’ task,
improving the representation of learning performance. Compared to
the rotation pretext, the relative position pretext utilises spatial signals
from different patches of an input image. Mazumder et al. (2021)
bridged rotation and relative position by slicing images and rotating the
patches. Although this strengthens the consciousness of image centres
during self-supervised training, the tile gridding process increases the
number of pretext classes and the computational cost.

Mixed sample data augmentation (MSDA) is used in computer
vision to expand the dataset and smooth the decision boundary by
synthesising multiple samples to create a new sample for training a
potent and reliable deep learning model (Kim, Choo, & Song, 2020;
Liu, Li, Wang et al., 2022; Park et al., 2022; Verma et al., 2019; Yun
et al., 2019; Zhang et al., 2018). These augmentation techniques can be
applied at either the image (Kim, Choo, & Song, 2020; Park et al., 2022;
Yun et al., 2019; Zhang et al., 2018) or feature (Verma et al., 2019)
level. At the image level, samples are combined using techniques such
as linear interpolation (Zhang et al., 2018), patch removal (DeVries
& Taylor, 2017), or cut-and-paste method (Kim, Choo, & Song, 2020;
Park et al., 2022; Yun et al., 2019). Liu, Li, Wu et al. (2022) proposed
Mixup and CutMix by utilising the class activation maps to guide the
generation of the mixed data. Instead of blending ground truths as
supervision signals, interpolated losses (Vu et al., 2023) were developed
for mingled data in object detection.

Most recently, MSDA has shown improved performance on con-
trastive self-supervised learning across various computer vision ap-
plications, including image classification (Kalantidis, Sariyildiz, Pion,
Weinzaepfel, & Larlus, 2020; Kim, Lee, Bae, & Yun, 2020; Shen et al.,
2022), object segmentation (Kalantidis et al., 2020), object detec-
tion (Shen et al., 2022), video representation learning (Wang et al.,
2021), and domain adaptation (Lee et al., 2021). To learn more robust
features in contrastive learning, negative pairs were introduced by
hard negative mixing (Kalantidis et al., 2020) or image-level mingling
3

within a single branch (Kim, Lee, et al., 2020). Shen et al. (2022)
deployed intra-image synthesis to increase the number of pairs with
a memory bank and computed a hybrid loss for mitigating the over-
fitting problem. However, the requirement of an additional memory
bank inevitably leads to expensive computational costs. More impor-
tantly, the impact of these data-mixing methods on non-contrastive
self-supervised learning is still under rapid development and requires
further investigation.

3. Methodology

The central concept of this study is to incorporate the awareness of
different regions within an image into the rotation pretext task. The
objective is to estimate the rotation transformation parameters that
were applied to the input image and improve the performance and
effectiveness of the rotation pretext task.

3.1. Full rotation framework

This section presents the methodology and overall framework of the
FullRot method, as depicted in Fig. 2.

Random Centre of Rotation. Rotating the entire image may over-
look important features near the image borders, as the rotation trans-
formation can primarily be inferred from information near the centre or
boundary of the image (see Fig. 1cd). To address this issue and mitigate
visual impairment near the boundaries, we adopted a random centre of
rotation. In each training epoch, an arbitrary rotation centre is selected
to guarantee that every region is treated as necessary as the ‘‘centre’’
in the vanilla rotation method (see Fig. 1gh).

Random Crop Ratio. The crop ratio is defined as the diameter of
the cropped region divided by the length of the short edge of an image
(i.e., width or height, whichever is minimum). A smaller crop ratio
provides more choices for the rotation centres. However, it also reduces
the richness of features in the cropped image. To strike a balance and
ensure sufficient information for the pretext task, the crop ratio is
randomly selected from a range of m to 1. m is the minimum crop ratio
and set to 0.6.

Full Rotation Degree. A digital image typically has a rectangular
shape with a horizontal orientation, which restricts the output shape of
rotated images to rectangles. When the rotation degree is not multiples
of 90◦ (e.g., 120◦ and 240◦), the four corners of the rotated images be-
come visually salient and may simplify the pretext task (see Fig. 1ef). To
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Fig. 2. Illustration of FullRot self-supervised framework. It randomly selects and crops the region from the input image 𝑋𝑖 using a random crop ratio, rotates the cropped image
𝐶𝑗
𝑖 using specific degrees with a constant gap, and then feeds the rotated image 𝑍𝑗

𝑖 into the backbone 𝐹 (.) for maximising prediction probability of rotation degrees 𝐹 𝑦(𝑍𝑗
𝑖 ). During

training, only two random classes of rotated images are utilised in each training epoch, as indicated with red or brown colour in the figure.
mitigate the negative effect of corners, we introduce circular cropping.
By cropping the image into a circular shape, it can be rotated by any
degree. Specifically, if there are 𝑑 rotation classes, the rotation degree
gap between neighbouring classes is 360◦∕𝑑.

The Number of Feeding Images. In the pretext task that relies on
the mutual relationship of geometrically transformed outputs (Doersch
et al., 2015; Gidaris et al., 2018; Noroozi & Favaro, 2016; Noroozi
et al., 2018), all transformed images from the same source are typically
used in every training epoch. However, not all rotation classes have
sufficient representative features for practical self-supervised training.
Inspired by contrastive learning approaches (Chen & He, 2021; Chen,
Kornblith, et al., 2020) that utilise only two augmented samples from
the same image, two rotated images generated from the same image are
randomly chosen for training in each epoch. This approach increases
the intricacy of the pretext task and improves the performance of self-
supervised learning (see Table 5). Moreover, maintaining a consistent
number of rotated input images across different rotation classes 𝑑
simplifies the training process by ensuring an equal number of training
epochs.

Loss Function. Assuming that the geometrically transformed
cropped image is 𝐶𝑖 = 𝑔1(𝑋𝑖), where 𝑋𝑖 ∈ R𝑊 ×𝐻×𝐶 is the 𝑖 th original
input image and 𝑔1 represents the cropping operator with a random
region and varying ratio. Then, the rotated image with label 𝑦 can be
defined as 𝑍𝑦

𝑖 = 𝑔2(𝐶𝑖|𝑦), where 𝑔2 represents the rotation operator.
The probability of the rotation transformation is given by:

𝐹 (𝑍𝑦∗
𝑖 |𝜔) = {𝐹 𝑦(𝑍𝑦∗

𝑖 |𝜔)}𝑇 (1)

where, the feature backbone 𝐹 (.) takes a cropped image 𝑍𝑦∗
𝑖 with an

unknown label 𝑦∗, 𝐹 𝑦(𝑍𝑦∗
𝑖 |𝜔) is the predicted probability of rotation

transformation, 𝑇 represents the number of rotation classes, and 𝜔
denotes the learnable parameters of backbone 𝐹 (.).

Given a set of 𝑁 training images, the total number of training
images is denoted as 𝑀 = {𝑋𝑖}𝑁𝑖=0. Thus, the objective of self-supervised
training is to minimise the crop-entropy loss:

− 1
𝑁𝑇

𝑁
∑

𝑇−1
∑

log(𝐹 𝑦(𝑔2(𝑔1(𝑋𝑖)|𝑦)|𝜔)) (2)
4

𝑖=0 𝑦=0
3.2. Weighted-region mixture

In this section, we introduce the weighted-region mixture (WRMix)
technique, which draws inspiration from the concepts of Mixup (Zhang
et al., 2018) and CutMix (Yun et al., 2019) The idea behind WRMix
is to leverage regional information of an image to guide the FullRot
method in learning the underrepresented parts of objects. Given that
the cropped regions in FullRot have random locations and side lengths
(illustrated in Section 3.1), these regions can be combined to form
a region that contains rich visual information. WRMix focuses on
amalgamating two regions from the same image, called the intra-image
mixture, as opposed to the inter-image mixture. Moreover, the intra-
image mixture is more advantageous for FullRot, as highlighted in
Table 7. Therefore, we specifically discuss intra-image mixture as an
example of WRMix in this section.

To simplify the pretext task, only the training images are regener-
ated, while the training labels remain the same (using the same rotation
angle). Two randomly cropped regions 𝑍𝑗

𝑖𝑎 and 𝑍𝑗
𝑖𝑏 from the same

image with the same rotation angle 𝑗𝜃◦ are blended to create a new
training sample 𝑍𝑗

𝑖 . The blending operation is defined as follows:

𝑍𝑗
𝑖 = 𝐌⊙𝑍𝑗

𝑖𝑎 + (𝟏 −𝐌)⊙𝑍𝑗
𝑖𝑏 (3)

where 𝐌 ∈ (0, 1)𝑊 ×𝐻 denotes a real-valued mask that determines
where the two images are mingled using a combination wight 𝜆1 fol-
lowing beta distribution ∼ beta(𝛼, 𝛼). The symbol ⊙ represents element-
wise matrix multiplication.

To create the mask 𝐌, the bounding box (𝑙𝑥1, 𝑙𝑦1, 𝑙𝑥2, 𝑙𝑦2) of the
weighted region should be sampled. The mask 𝐌 is first separated from
the central region and then moved by a random distance according to:

𝛥𝑥 ∼ [−(1−𝜆′)𝑊 ∕2,(1−𝜆′)𝑊 ∕2]

𝛥𝑦 ∼ [−(1−𝜆′)𝐻∕2,(1−𝜆′)𝐻∕2]
(4)

and
𝑙𝑥1 = (1 − 𝜆′)𝑊 ∕2 + 𝛥𝑥

𝑙𝑦1 = (1 − 𝜆′)𝐻∕2 + 𝛥𝑦

𝑙𝑥2 = (1 + 𝜆′)𝑊 ∕2 + 𝛥𝑥
′

(5)
𝑙𝑦2 = (1 + 𝜆 )𝐻∕2 + 𝛥𝑦
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Fig. 3. Examples generated by different data blending methods.
where 𝑊 and 𝐻 are the width and height of the image, the ratio of the
cropped mask area is (𝑙𝑥2−𝑙𝑥1)(𝑙𝑦2−𝑙𝑦1)

𝐻𝑊 ∕ = 𝜆′2, and 𝜆′ is the proportion of
cropping length to the original image size, defined as

𝜆′ = c + 4
√

1 − 𝜆2(1 − c) (6)

where 𝜆2 ∼ beta(𝛼, 𝛼), and c is a constant set to 0.5, meaning the mask’
minimum length is half the original image’s side length.

To establish a relationship between the weight and the area of the
masking region, 𝜆1 and 𝜆2 have the following relationship:

𝜆1 = beta(𝛼, 𝛼) + b(1 − 𝜆′2) (7)

where b is a constant set to 0.2. This formula ensures that as the
amalgamated area increases, the combination weight 𝜆1 is more likely
to follow the standard beta distribution.

Examples of augmented images and corresponding class activa-
tion map (CAM) are shown schematically in Fig. 3. WRMix combines
patches from two different regions of an image and highlights under-
stated features by repositioning spatial features, distinguishing itself
from Mixup (Zhang et al., 2018) and CutMix (Yun et al., 2019). In
the third column of Fig. 3, the CAM of different data mixture methods
indicate that CutMix (Yun et al., 2019) and HMix (Park et al., 2022)
tend to direct the network towards the mask boundary. However, the
WRMix mask is rotated randomly to help alleviate the negative effect
of irrelevant information on the mask boundary. Thus, WRMix captures
more general features than CutMix and HMix, even when using a
cropped mask.

Algorithm 1 describes the implementation of WRMix in the FullRot
pretext task. Based on the ablation results of 𝛼 in Fig. 5, 𝛼 is set to 1
in all experiments unless otherwise specified. Therefore, 𝜆1 and 𝜆2 are
sampled from the continuous uniform distribution [0,1].

3.3. Evaluation protocol

Based on the empirical studies, our framework has several specific
design choices to achieve the optimised output. We evaluated the
proposed algorithms with the following conditions.

Dataset. To statistically validate the robustness of our proposed
method, we test our method and the control group in diverse scenar-
ios across three independent tasks, including classification, semantic
segmentation, and object detection.

The dataset of classification task used in this paper includes CIFAR-
10/100 (Krizhevsky, 2009), STL-10 (Coates, Ng, & Lee, 2011), Sports-
100 (Piosenka, 2022), Mammals-45 (Asaniczka, 2023), and PAD-UFES-
20 (Pacheco et al., 2020). CIFAR-10 and CIFAR-100 consist of 50,000
5

Algorithm 1 Pseudocode of WRMix in a python-like style.

for x in Loader:
# create patches and labels by FullRot
x1, x2, Labels = fullRotation(x)
W, H = x1.size

# sampled from the beta distribution
Lam2 = beta(Alpha, Alpha)
# restricted within (c, 1)
Lam2 = c + (1 - Lam2) ** (0.25) * (1 - c)
# weighted random region generation
BBox, BBoxArea = randWRBBox([W, H], Lam2)
# the proportion of region that is not blended
NonMix = 1 - BBoxArea / (W * H)
# follows the beta distribution with bias
Lam1 = min(beta(Alpha, Alpha) + b * NonMix, 1)

Mask = zeros([H, W])
# weighted bounding location
Mask[BoundingBox] = 1 - Lam1
# randomly rotation
Mask = rotate(Mask, uniform(0, 360))
# mix patches 1 and 2 with a mask
MixImage = Mask * x1 + (1 - Mask) * x2

Output = ResNet(MixImage)
Loss = CrossEntropyLoss(Output, Labels)

training and 10,000 test 32 × 32 images of common objects with 10
and 100 classes, respectively. With a larger input size, 96 × 96, STL-10
consists of 5,000 training and 8,000 test common object images with
10 classes, and 100,000 unlabelled images. Sports-100 is a collection
of sports images with 100 sport types, including 13,493 training, 500
validation and 500 test 224 × 224 images. Besides, the Mammals-45
dataset comprises 13,751 images and 45 mammal classes sourced from
Google Images. Meanwhile, PAD-UFES-20 is a smartphone-collected
skin lesions dataset with 2,298 images and 6 classes. Without the
division of training and test data, five-fold cross-validation is applied to
Mammals-45 and PAD-UFES-20. For balanced comparison, Mammals-
45 and PAD-UFES-20 images are resized to 224 × 224. Additionally,
due to computational resource constraints, 100,000 STL-10 unlabelled
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images are applied to pretrain deep neural networks in a self-supervised
manner.

The performance of our method is also verified on the seman-
tic segmentation task using PASCAL VOC 2012 (Everingham et al.,
2015), ISIC 2018 (Codella et al., 2019; Tschandl, Rosendahl, & Kittler,
2018), FloodArea (Karim, Sharma, & Barman, 2022), and TikTok-
Dances (Roman, 2019), while object detection task using PASCAL
VOC 2007+2012 (Everingham et al., 2015; Everingham, Van Gool,
Williams, Winn, & Zisserman, 2010) and UTDAC 2020 (Song, Li, Dai,
Wang, & Chen, 2023). PASCAL VOC 2007 has 9,963 images with 20
classes and 24,640 ROI-annotated objects. PASCAL VOC 2012 includes
11,530 images with 20 classes, 27,450 ROI-labelled objects, and 6,929
segmentation masks. Both datasets follow the 1:1 data division for
training/validation and test sets. For the object detection task, the
training set of PASCAL VOC 2007 + 2012 is utilised to finetune
networks, and the PASCAL VOC 2007 test set is used for evaluation
(the labels of the test set of PASCAL VOC 2012 are inaccessible). In
addition, ISIC 2018 has 2,594 training images and 1,000 testing images
with corresponding masks for unhealthy areas. FloodArea is a dataset
of flood surveys containing 290 images of flood-affected areas, each
accompanied by a corresponding mask for the water region. Besides,
the TikTokDances dataset comprises 2,615 images, each featuring a
masked dancing human picture. The FloodArea and TikTokDances
datasets adhere to a 4:1 ratio for the division of training and test sets.
In addition, the UTDAC 2020 dataset is dedicated to underwater object
detection, encompassing 5,168 training and 1,293 test images with 4
classes: echinus, holothurian, starfish, and scallop.

Default Setting. The networks for classification, segmentation, and
etection tasks are trained on an RTX3090 GPU and an Intel Xeon
latinum 8375C CPU. We choose ResNet50 (He, Zhang, Ren, & Sun,
016) and ViT-B/16 (Dosovitskiy et al., 2021) as the basic CNN and
iT encoder network, respectively. The learning rate is adjusted using
cosine schedule (Loshchilov & Hutter, 2017), and the initial 10% of

he training epochs allocated for learning rate warm-up and freezing
he weights of the transferred backbones. The code for the three vision
asks is inspired by Mehta, Abdolhosseini, and Rastegari (2022) and
mplemented using PyTorch (Paszke et al., 2019) and Detectron2 (Wu,
irillov, Massa, Lo, & Girshick, 2019) package, excluding the MAE (He
t al., 2022) and BEiT v2 (Peng et al., 2022) models, which are trained
nd validated using their official implementations. Unless otherwise
tated, the number of FullRot classes 𝑑 is set to 12, in accordance with

the studies referenced in Section 4.3.

4. Experimental results

In this section, we present the experimental results of FullRot and
WRMix on various tasks. The performance of FullRot + WRMix is first
evaluated on the STL-10, CIFAR-10/100, and PAD-UFES-20 datasets for
classification tasks in Section 4.1. The classification results demonstrate
that FullRot + WRMix delivers the best performance among all tested
self-supervised learning (SSL) methods on STL-10, CIFAR-10, Sports-
100, Mammals-45, and PAD-UFES-20, as well as non-contrastive SSL
methods on CIFAR-100.

In Section 4.2, we investigate the versatility of FullRot and WR-
Mix by evaluating their performance on ISIC 2018/FloodArea/TikTok-
Dances segmentation task, PASCAL VOC (abbr.VOC) segmentation and
detection tasks, and the UTDAC 2020 detection task. The results reveal
that the combination of FullRot and WRMix outperforms the state-
of-the-art (SOTA) SSL methods in these tasks, except for securing a
commendable second place in the TikTokDances segmentation task.

Additionally, the ablation studies for FullRot and WRMix are pre-
sented in Section 4.3 to analyse the impact of different components and
parameters. Finally, we provide visualisation of t-SNE plots of features
produced by different SSL methods and class activation maps (CAM)
for vanilla rotation and FullRot in Section 4.4, offering insights into
the learned representations.
6

m

4.1. Image classification results

Implementation Details. During pretraining, FullRot and other
SOTA methods are trained for 200 epochs on the STL-10 unlabelled set.
The pretrained models are then finetuned for 100 epochs on the respec-
tive training set of STL-10, CIFAR-10/100, Sports-100, Mammals-45,
and PAD-UFES-20. The batch size used is 1024, 256, and 128 images
for STL-10, CIFAR-10/100, and Sports-100/Mammals-45/PAD-UFES-
20, respectively. The learning rate starts at 0.0002 and is increased to
0.002 for the first 10% epochs before annealing to 0.0002 with Adam
optimiser (Loshchilov & Hutter, 2018). Fundamental data augmenta-
tion techniques such as image resizing are applied, and cross-entropy
loss with label smoothing (value 0.1) and class sensitivity are used
while training all non-contrastive SSL methods. For contrastive SSL
methods, the settings reported in Chen, Fan, et al. (2020), Chen and
He (2021), Chen, Kornblith, et al. (2020) and Zbontar et al. (2021)
are strictly followed. The performance of SOTA methods is evalu-
ated by averaging the results from three experiments on the STL-10,
CIFAR-10/100, and Sports-100 test sets, while for Mammals-45 and
PAD-UFES-20, five-fold cross-validations are performed. The evaluation
metrics used are top-1 linear classification accuracy and 5-nearest
neighbours (5-nn) classification accuracy.

Comparison with Non-pretrained Baseline. It is evident from
able 1 that the CNN-based SSL methods exceptionally surpass the non-
retrained CNN baseline with 12.64% ∼ 19.34% linear and 10.72%

18.45% 5-nn classification accuracy rises on the STL-10 test set.
n the CIFAR-10 test set for the CNN-based methods, the accuracy
aps are smaller, ranging from 2.34% to 5.08% linear and 1.03% to
.56% 5-nn, excluding Barlow, which has the lowest linear (84.39%)
nd 5-nn (83.48%) accuracy. The gaps become larger on the CIFAR-
00 test set for the CNN-based methods, which ranges from 2.14% to
1.90% linear and 3.70% to 11.92% 5-nn accuracy, except for Barlow,
hich has the lowest 5-nn accuracy at 50.46%. On the Sports-100 and
ammals-45 test sets, the CNN-based SSL methods perform better than

he non-pretrained baseline with no less than 0.5% linear and 5-nn
ccuracy, except that Barlow exhibits the lowest 5-nn accuracy falling
3% lower than the baseline on both datasets and Jigsaw++ records

he second-lowest 5-nn accuracy of 81.35% on the Mammals-45 test
et.

Furthermore, the ViT-based SSL methods (i.e., MAE and BEiT v2)
ttain a significant improvement over non-pretrained ViT baseline with

24.03% ∼ 33.56% linear and 29.53% ∼ 40.19% 5-nn accuracy
ises on the STL-10 test set. These ViT-based SSL methods also obtain

minimum of 35% increases in linear and 5-nn accuracy over the
on-pretrained ViT baseline on the CIFAR-10/100, Sports-100, and
ammals-45 test sets.

Even with a larger domain difference between the STL-10 unlabelled
et and PAD-UFES-20 dataset, all tested SSL methods still show consid-
rable accuracy growths (e.g., +0.87% ∼ +11.52% linear accuracy) on
he PAD-UFES-20 test set compared to the one without pretraining.

These results demonstrate that self-supervised pretraining using
ullRot or other SOTA methods can significantly enhance representa-
ion learning, except for Barlow, which may lead to overfitting and
orse performance on CIFAR-10/100, Sports-100, and Mammals-45

lassification tasks. Notably, the FullRot + WRMix method exceeds the
on-pretrained group by > 10% linear and 5-nn accuracy on the STL-
0 and PAD-UFES-20 datasets, and by >5% on the CIFAR-10/100 and
ammals-45 datasets, except for >3% 5-nn accuracy on the CIFAR-10

nd Sports-100 datasets.
Comparison with the SOTA SSL Methods. According to Table 1,

ullRot with WRMix achieves the highest classification accuracy,
8.11% & 89.79% & 95.53% & 91.24% & 72.54% linear and 87.80% &
9.77% & 96.07% & 88.87% & 73.19% 5-nn, among the tested SSL
ethods on STL-10, CIFAR-10, Sports-100, Mammals-45, and PAD-
FES-20, respectively. FullRot + WRMix outperforms the second-place

ethods, MoCo v2, by 1.21% 5-nn accuracy on the PAD-UFES-20
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Table 1
Linear and 5-nearest neighbours classification results for different methods and datasets.The best results of non-contrastive and contrastive learning methods are emphasised in
bold and underlined, respectively.

Self-supervision Method STL-10 CIFAR-10 CIFAR-100 Sports-100 Mammals-45 PAD-UFES-20

linear ⇑⇑⇑ 5-nn linear 5-nn linear 5-nn linear 5-nn linear 5-nn linear 5-nn

Non-pretrained Baseline ViT 50.10 45.46 38.87 38.27 16.42 17.65 22.53 26.87 32.18 28.27 55.94 51.96

CNN 68.77 69.35 84.71 86.21 52.34 51.26 91.07 90.60 85.05 81.82 62.49 63.75

Contrastive Learning

SimSiam (Chen & He, 2021) 82.85 83.25 89.74 89.76 64.24 62.54 93.93 93.07 87.42 85.07 63.36 63.58

MoCo v2 (Chen, Fan, et al., 2020) 84.35 84.22 88.77 88.90 62.34 60.60 94.07 94.40 89.72 87.02 70.58 71.98

SimCLR (Chen, Kornblith, et al., 2020) 86.75 87.22 89.60 89.72 64.22 63.18 95.00 95.07 90.80 88.40 66.84 66.15

Barlow (Zbontar et al., 2021) 87.61 83.88 84.39 83.48 54.48 50.46 93.20 87.07 87.85 74.51 69.19 68.54

Non-contrastive Learning

MAEa (He et al., 2022) 74.13 74.99 81.23 81.34 55.08 53.24 87.93 85.87 75.38 75.89 63.55 58.04

Rotation (Gidaris et al., 2018) 81.41 80.07 87.37 87.24 56.84 54.96 94.13 93.27 89.94 87.10 69.63 70.02

BEiT v2a (Peng et al., 2022) 83.66 85.65 81.92 81.57 56.04 56.56 91.80 92.93 80.86 80.24 67.46 68.70

Jigsaw++ (Noroozi et al., 2018) 85.51 82.92 87.76 88.27 59.68 55.95 93.67 90.93 86.07 81.35 66.49 67.19

Jigsaw (Noroozi & Favaro, 2016) 85.26 84.27 87.05 87.59 58.26 56.24 92.20 91.33 86.07 83.39 64.71 66.10

Context (Doersch et al., 2015) 85.71 85.56 88.34 88.45 59.52 56.68 92.47 91.47 87.10 82.59 66.71 68.76

FullRot (Ours) 87.46 87.29 89.62 89.64 62.23 60.59 95.13 95.13 90.82 88.59 72.11 72.76

FullRot + WRMix (Ours) 88.11 87.80 89.79 89.77 62.51 60.71 95.53 96.07 91.24 88.87 72.54 73.19

a Employ ViT as the backbone.
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test set. Moreover, FullRot achieves top-tier linear (62.51%) and 5-
nn (60.71%) accuracy among non-contrastive SSL methods on the
CIFAR-100 test set.

Furthermore, FullRot without WRMix surpasses the performance of
traditional rotation on all six classification datasets with 5-nn accuracy
improvement of +7.22% on STL-10, +2.40% on CIFAR-10, +5.63%
n CIFAR-100, +1.86% on Sports-100, +1.49% on Mammals-45, and

+2.74% on PAD-UFES-20. Besides, the inclusion of WRMix significantly
enhances the performance of FullRot on all tested datasets (e.g., 0.94%
5-nn accuracy on Sports-100, 0.65% linear accuracy on STL-10, 0.43%
5-nn accuracy on PAD-UFES-20, 0.42% linear accuracy on Mammals-
45, 0.28% linear accuracy on CIFAR-100, and 0.17% linear accuracy
on CIFAR-10).

4.2. Segmentation and detection results

To evaluate the general-purpose characteristics of FullRot and WR-
Mix, we benchmark FullRot with WRMix on two broadly investigated
tasks: semantic segmentation in Section 4.2.1 and object detection in
Section 4.2.2.

4.2.1. Semantic segmentation results
Implementation Details. We consolidate the pretrained ResNet50

backbone with DeepLabv3+ (Chen, Zhu, Papandreou, Schroff, & Adam,
2018). The segmentation network is finetuned on the VOC 2012, ISIC
2018, FloodArea, or TikTokDances training set with an input size
512 × 512. The training process consists of 100 epochs, a batch size
of 32 images, and the Adam optimiser with cross-entropy loss. The
learning rate is ceased from 5 × 10−5 to 5 × 10−4 for the first 10%
pochs and then annealed to 1 × 10−6. The performance is evaluated
n the corresponding validation set using mean intersection over union
mIoU), and the results are averaged in three experimental runs.
Results. Semantic segmentation results are revealed in Table 2,

hich demonstrates that SSL methods outperform the non-pretrained
aseline with 1.51% ∼ 18.14%, 0.68% ∼ 8.08%, 0.10% ∼ 2.34%, and

0.38% ∼ 11.46% increased mIoU on VOC 2012, ISIC 2018, FloodArea,
and TikTokDances test sets, respectively, except for BEiT v2, which
has the lowest mIoU at 74.96% on FloodArea. Among tested SSL
methods, FullRot without WRMix achieves the second-highest mIoU
of 87.31% on ISIC 2018 and the third-highest mIoU of 41.72% and
95.14% on VOC 2012 and TikTokDances, respectively. When combined
7

with WRMix, FullRot attains the highest mIoU of 43.02% on VOC 2012,
87.46% on ISIC 2018, and 84.66% on FloodArea. Additionally, FullRot
with WRMix secures the second-highest mIoU of 95.18% on TikTok-
Dances. These results suggest that WRMix can effectively assist FullRot
in learning more critical representations. Besides, FullRot + WRMix
overtakes the conventional rotation method with a mIoU increase of
14.61% on VOC 2012, 1.79% on ISIC 2018, 0.76% on FloodArea, and
0.14% on TikTokDances, demonstrating the statistical significance of
our refined rotation pretext task.

4.2.2. Object detection results
Implementation Details. We deploy the backbone with the faster

egion-based convolutional network (Faster R-CNN) detector (Ren, He,
irshick, & Sun, 2017). For ViT backbone, a feature pyramid is used

o bridge the backbone and Faster R-CNN as suggested by Li, Mao,
irshick, and He (2022). The training is performed with input di-
ensions ranging from 480 to 800 pixels, 24,000 iterations, and a

atch size of 4 images on the VOC 2007 + 2012 or UTDAC 2020
raining set. The other settings of the Faster R-CNN detector follow
he default configurations of the VOC detection task in Detectron2 (Wu
t al., 2019). The performance of object detection is evaluated on the
OC 2007 and UTDAC 2020 test sets by averaging three experiments’
verage precision at the IoU of 0.50, AP50, and the two more strict
etrics of COCO-style AP (at IoU of 0.50:0.05:0.95) & AP75 (at IoU of

0.75).
Results. The detection results on the VOC 2007 and UTDAC 2020

test sets presented in Table 3 illustrate that SSL methods deliver >5%
AP50 and >2% AP & AP75 increment compared to non-pretrained base-
line. Among all tested SSL methods, FullRot shows the top-tier AP50 of
48.77% & 75.54 (with WRMIx) and 47.36% & 74.82 (without WRMIx),
surpassing the non-pretrained baseline, 17.94% & 53.97% AP50, on
the VOC 2007 and UTDAC 2020 test sets, respectively. Moreover,
FullRot with WRMIx also achieves over 6% increased AP50, AP, and
AP75 on both datasets compared to the traditional rotation method.
These results highlight the superior performance of FullRot and WRMix
in representation learning for object detection, further validating the
effectiveness of our refined rotation pretext task.

4.3. Ablation studies

Implementation Details. Considering the limited computational
resources, the self-supervised training is conducted using 100 epochs.
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Table 2
Segmentation results for different methods and datasets. The best results of non-contrastive and contrastive learning methods are emphasised
in bold and underlined, respectively.

Self-supervision Method VOC 2012 ISIC 2018 FloodArea TikTokDances

mIoU ⇑⇑⇑ mIoU mIoU mIoU

Non-pretrained Baseline ViT 9.07 78.51 75.55 74.39

CNN 24.88 84.65 82.32 93.86

Contrastive Learning

SimSiam (Chen & He, 2021) 37.22 86.88 84.27 95.10

Barlow (Zbontar et al., 2021) 38.42 85.72 83.02 94.35

MoCo v2 (Chen, Fan, et al., 2020) 38.65 87.18 84.43 95.08

SimCLR (Chen, Kornblith, et al., 2020) 42.43 87.01 84.63 95.23

Non-contrastive Learning

BEiT v2a (Peng et al., 2022) 10.58 79.84 74.96 79.04

MAEa (He et al., 2022) 26.82 86.59 76.57 85.85

Rotation (Gidaris et al., 2018) 28.41 85.67 83.90 95.04

Jigsaw++ (Noroozi et al., 2018) 32.05 85.73 82.64 94.33

Context (Doersch et al., 2015) 32.23 85.85 82.44 94.35

Jigsaw (Noroozi & Favaro, 2016) 32.28 85.33 82.84 94.24

FullRot (Ours) 41.72 87.31 84.19 95.14

FullRot + WRMix (Ours) 43.02 87.46 84.66 95.18

a Employ ViT as the backbone.
Table 3
Detection results for different methods and datasets. The best results of non-contrastive and contrastive learning methods are emphasised in
bold and underlined, respectively.

Self-supervision Method VOC 2007 UTDAC 2020

AP50 ⇑⇑⇑ AP AP75 AP50 AP AP75

Non-pretrained Baseline CNN 17.94 8.00 5.74 53.97 24.91 18.44

ViT 19.50 8.31 6.03 56.16 25.80 19.02

Contrastive Learning

SimSiam (Chen & He, 2021) 34.00 16.90 14.62 50.44 22.89 16.29

Barlow (Zbontar et al., 2021) 43.51 19.69 14.43 50.19 22.77 16.15

MoCo v2 (Chen, Fan, et al., 2020) 45.66 23.37 20.60 55.24 25.75 19.36

SimCLR (Chen, Kornblith, et al., 2020) 46.40 24.38 22.15 71.25 35.52 30.61

Non-contrastive Learning

Rotation (Gidaris et al., 2018) 23.61 10.80 8.31 66.47 31.60 25.11

Jigsaw (Noroozi & Favaro, 2016) 26.84 12.01 8.73 16.85 5.70 2.02

Context (Doersch et al., 2015) 27.11 12.46 9.80 41.20 16.88 9.75

Jigsaw++ (Noroozi et al., 2018) 28.53 13.24 10.86 18.46 6.41 2.58

BEiT v2a (Peng et al., 2022) 38.06 18.15 14.65 67.73 33.39 28.46

MAEa (He et al., 2022) 42.41 20.28 15.79 70.66 34.62 28.97

FullRot (Ours) 47.36 23.40 19.64 74.82 38.10 33.73

FullRot + WRMix (Ours) 48.77 24.42 20.74 75.54 38.59 34.58

a Employ ViT as the backbone.
he evaluation metric is linear classification accuracy on the STL-10
est set. Moreover, the default setting for the self-supervised method
s FullRot + WRMix unless specified otherwise. The other training
nd evaluating settings for classification follow those described in
ection 4.1.
Impact of Crop Centre and Ratio. To investigate whether the

random cropping centre and the random crop ratio can affect the
pretext task, we also train and evaluate FullRot using the original centre
and a fixed crop ratio of 0.8, respectively. The results illustrated in
Table 4 show a 0.64% increase in accuracy by using a random centre
and a 0.62% increment in accuracy by using a random crop ratio.

Impact of Crop Shape. Examining the effect of cropping an image
into a circle versus a rectangle with multiples of 90◦, it is found
hat maintaining a circular shape for the cropped region statistically
mproves FullRot’s performance. As shown in Table 4, there is a 0.42%
ncrease in accuracy on the STL-10 classification task. The improved
esults suggest that the rectangular shape introduces less complex and
iscriminative features near the cropped borderline, particularly at the
our corners.
8

Table 4
The impact of four different crop schemes (✗: cancel setting, ✓: use setting).

Crop scheme Accuracy

Random Centre ✗ 86.60

✓ 87.24 ↑𝟎.𝟔𝟒

Random Crop Ratio ✗ 86.62

✓ 87.24 ↑𝟎.𝟔𝟐

Cropped Into a Circle ✗ 86.82

✓ 87.24 ↑𝟎.𝟒𝟐

Background Removal ✗ 85.10

✓ 87.24 ↑𝟐.𝟏𝟒

Impact of Cropped Background. We also train and evaluate Full-
Rot by retaining the background of the cropped region during self-
supervised training, and the results can be found in the last column
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Fig. 4. The impact of the different number of rotation classes.

Fig. 5. The impact of 𝛼 for image blending.

of Table 4. The presence of the background introduces dominant and
irrelevant features of objects, which strongly correlates with features
near the crop borderline, resulting in a 2.14% drop in accuracy.

The Number of FullRot Classes. To discover the most suitable
number of FullRot classes, we train and evaluate the ResNet50 back-
bone with all possible rotation classes whose angles have integer values.
The STL-10 classification results, shown in Fig. 4, illustrate that the
performance of FullRot with even rotation classes is increasing from
84.72% (2 classes) to 87.24% (12 classes) and then dropping to 83.15%
(360 classes). Similarly, the performance of FullRot with odd rotation
classes increases from 82.20% (3 classes) to 84.12% (9 classes) and
then decreases to 83.71% (45 classes). Besides, there is a strong positive
correlation (correlation coefficient of 0.6392) between the number of
even/odd rotation classes and prediction accuracy. Although the line
of odd classes is under the even classes, FullRot, with any number of
classes, still exceeds the non-pretrained baseline by >13% accuracy.
More importantly, the majority of even classes between 4 to 24 show
peak performance (>85.5% accuracy). Thus, the study selects 12 rota-
tion classes as the default setting, reaching the best results of 87.24%
accuracy.

The Number of Feeding Classes. To figure out the effect of the
umber of rotation classes feeding, we train and evaluate FullRot by
andomly feeding 1, 2 (default), 4(33.33%), 6 (half), and 12 (all) rota-
ion classes of each image on every training epoch. To keep the close
umber of input rotated images, the corresponding training epochs are
00, 100, 50, 34, and 17. The results are shown in Table 5. Although
ullRot + WRMix secure higher accuracy than none-pretraining base-
ine (66.77% in Table 1) regardless of feeding classes, two feeding
lasses outperform all other options, achieving more than 0.40% higher
ccuracy on STL-10. Moreover, feeding only two classes also simplifies
9

Table 5
The impact of the number of images feeding on the experimental results.

# Feeding classes ⇑⇑⇑ Epochs Feeding times Accuracy

1 200 200 85.87+0.20
−0.17

2 100 200 87.24+0.13−0.25

4 (33.3%) 50 200 85.75+0.36
−0.25

6 (50%) 34 204 86.48+0.14
−0.20

12 (100%) 17 204 86.84+0.08
−0.13

Table 6
The impact of different data mixture methods.

Data-mixing method Accuracy ⇑⇑⇑

– 86.59

GMix (Park et al., 2022) 85.90 ↓0.69

Mixup (Zhang et al., 2018) 86.35 ↓0.24

CutMix (Yun et al., 2019) 86.47 ↓0.12

HMix (Park et al., 2022) 86.85 ↑0.26

WRMix (Ours) 87.24 ↑𝟎.𝟔𝟓

Table 7
The impact of inter-image and intra-image blend.

Methods 𝜅 ⇑⇑⇑ Accuracy

Inter-image Mixture 0 86.95+0.31
−0.20

Hybrid Mixture 0.5 86.76+0.19
−0.18

Intra-image Mixture 1 87.24+0.13−0.25

the choice of the maximum training epoch regardless of the total
number of rotation classes 𝑑. Thus, it is recommended to load two
rotation classes on every epoch.

The Method of Data Mixture. To demonstrate the efficacy of
WRMix, four data mixture methods, including Mixup (Zhang et al.,
2018), CutMix (Yun et al., 2019), HMix (Park et al., 2022), and
GMix (Park et al., 2022), are compared in this section. As indicated in
Table 6, Mixup, CutMix, and GMix lead to lower classification accuracy
(<86.59%) than pretraining without mingling data. More importantly,
WRMix delivers +0.39% ∼ +1.34% classification accuracy on STL-10
compared to SOTA methods. Such results illustrate that there is a sig-
nificant performance improvement in representation learning because
of WRMix.

Inter-image vs. Intra-image Mixture. Setting 𝜅 as 0, 0.5, 1 rep-
resents the possibility of intra-image mixing (1 − 𝜅 for inter-image
synthesising). As shown in Table 7, intra-image blending with 𝜅 = 1
outperforms other 𝜅 values, showing a > 0.25% accuracy improvement.

Beta Distribution Parameter 𝛼𝛼𝛼. 𝛼 is the parameter that affects the
combination weight 𝜆1 and size of cropping mask (see Section 3.2).
When varying the values of 𝛼 (0.5, 1, 2, and 8), the results, represented
in Fig. 5, reveal that 𝛼 = 1 secures the highest classification accuracy of
87.24% on STL-10 test set, outperforming other 𝛼 values by more than
0.48%. This indicates that the uniform distribution [0,1] is favourable.

4.4. Visualisation

Implementation Details. To gain a deeper insight into the effect
of the different SSL methods, we visualise the learned features using t-
distributed stochastic neighbour embedding (t-SNE) (Van der Maaten
& Hinton, 2008). To figure out the regions of interest for vanilla
rotation and FullRot (either with WRMix or without WRMix) and the
performance gap between the odd and even number of rotation classes,
we extract the CAM from the final layer of the backbone by using
LayerCAM (Jiang, Zhang, Hou, Cheng, & Wei, 2021) on the TorchCAM
tool (Fernandez, 2020).

Feature Maps. It can be observed from the t-SNE results shown
in Fig. 6 that all SSL methods exhibit a more diverse distribution of
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Fig. 6. The comparison of t-SNE plots for STL feature generated by (a) SimSiam, (b) MoCo v2, (c) SimCLR, (d) Barlow, (e) Non-pretrained CNN baseline, (f) Jiasaw++, (g) Jigsaw,
(h) Context, (i) Non-pretrained ViT baseline, (j) MAE, (k) BEiT v2, (l) Vanilla rotation, (m) FullRot (ours), and (n) FullRot + WRMix (ours).
Fig. 7. The comparison of CAM for (a) input images from methods (b-c) vanilla rotation, FullRot (d-e), and FullRot + WRMix with (f-g) the even number of rotation classes and
(h-i) the odd number of rotation classes. The rotation degree for (b) & (d) & (f) & (h) is 0◦, (c) is 90◦, (e) & (g) is 60◦, and (i) is 80◦.
features compared to the non-pretrained baseline. Notably, FullRot
without (Fig. 6m) or with (Fig. 6n) WRMix reveals a closer distribu-
tion of intra-class features among tested SSL methods, which suggests
that FullRot and WRMix encouraged the network to treat the under-
estimated regions equally crucial as other regions, leading to more
balanced and robust feature representations.

Attention Maps. The examples of CAM presented in Fig. 7. For
vanilla rotation (Fig. 7bc), it can be observed that the focus is mainly
confined to a small region in the lower-left corner of the image.
In contrast, FullRot (Fig. 7de) exhibits a more concentrated region
closely related to the objects in the images, indicating that FullRot
10
can capture more relevant and informative regions for representation
learning than the conventional method. Moreover, FullRot with WRMix
(Fig. 7fg) highlights the objects (e.g., the monkey in the first-row image)
in the images more prominently than FullRot without WRMix, while
minimising the emphasis on the background.

Fig. 7hi illustrates the CAM of FullRot + WRMix with odd classes,
covering a more extensive region than even classes, which may be the
main reason for the significant performance gap between the odd and
even number of rotation classes. The absence of a point reflection in
odd classes simplifies the pretext task, leading to a different distribution
of attention in the learned representations.
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5. Discussion

The narrow margin of 1.73% linear accuracy (SimSiam) and 2.47%
5-nn accuracy (SimCLR) (see Table 1) on the CIFAR-100 test set and
0.05% mIoU (SimCLR) (see Table 2) on the TikTokDances test set
between FullRot + WRMix and the leading methods suggests that
FullRot + WRMix is a competitive approach. The difference in per-
formance could be attributed to CIFAR-100 and TikTokDances having
ten times and one-tenth times classes as STL-10 unlabelled set, re-
spectively, resulting in a significant domain shift. To address this, it
may be beneficial to supplement the self-supervised pretraining dataset
with additional data or explore ways to reduce the domain difference
between the CIFAR-100/TikTokDances and STL-10 datasets.

On the other hand, FullRot + WRMix seizes the top-tier performance
on skin lesions classification on PAD-UFES-20 (72.54% linear and
73.19% 5-nn accuracy in Table 1) and segmentation on ISIC 2018
(87.46% mIoU in Table 2). This indicates its potential for practical
application in label-efficient medical image analysis tasks.

Moreover, the training times of FullRot with and without WRMix
are similar, with a negligible difference of only 0.5% in total times
(5.73 h versus 5.76 h), as WRMix does not increase the number of
feeding images. Additionally, as a mixed sample data augmentation
method, WRMix holds enormous potential to be developed as a gen-
eral data augmentation technique for enhancing image representation
learning.

Further investigation is warranted to explore the effectiveness of
inter-image and intra-image mingling in different circumstances and
datasets due to only a minor margin among different circumstances
(<0.5% linear accuracy in Table 7).

Furthermore, our concept of full rotation could be extended to
sphere rotation for three-dimensional data, such as point clouds. The
experimental designs and discussions presented in this work could serve
as a reference for future development of cubic rotation with multiple
90◦ angles and sphere rotation. These could potentially evolve into
fundamental data augmentation methods for 3D data in the future.
Additionally, WRMix also possesses the potential to be integrated with
weighted and rotated regions of 3D data.

6. Conclusion

In this paper, we have conducted a comprehensive study on self-
supervised representation learning using rotation transformations as a
pretext task. We have identified that the conventional rotation pretext
task lacks effectiveness in capturing features near the centre of images.
To overcome this limitation, we have proposed FullRot, a novel ap-
proach that involves random cropping of an arbitrary region with a
random crop ratio. Moreover, we have introduced circular cropping
and rotation of the cropped region to any degree to enhance the com-
plexity of the pretext task. Besides, we have explored different mixed
sample data augmentation methods and introduced WRMix, a novel
approach for blending two intra-image patches. Equipped with these
innovative techniques, FullRot + WRMix has achieved state-of-the-art
performance on ten benchmark datasets. Notably, FullRot + WRMix
has demonstrated superior performance compared to the conventional
rotation pretext task on ten benchmark datasets and three vision tasks
with significant improvements (e.g., +6.70% linear accuracy on STL-10,
+2.53% 5-nn accuracy on CIFAR-10, +5.67% linear accuracy on CIFAR-
100, +2.80% 5-nn accuracy on Sports-100, +1.77% 5-nn accuracy on
Mammals-45, +3.17% 5-nn accuracy on PAD-UFES-20, +14.61% mIoU
on VOC 2012, 1.79% mIoU on ISIC 2018, +0.76% mIoU on FloodArea,
+25.16% AP50 on VOC 2007, and +9.07% AP50 on UTDAC 2020).
Overall, the findings of this study highlight the effectiveness of FullRot
and WRMix and their potential for improving self-supervised feature
learning.
11
Table 8
Training time cost of self-supervised training for the tested methods on the STL-10
unlabelled set.

Self-supervision Method Time cost/h

Contrastive Learning

Barlow (Zbontar et al., 2021) 6.00

SimCLR (Chen, Kornblith, et al., 2020) 6.02

SimSiam (Chen & He, 2021) 5.59

MoCo v2 (Chen, Fan, et al., 2020) 3.79

Non-contrastive Learning

MAE (He et al., 2022) 4.16

Jigsaw (Noroozi & Favaro, 2016) 4.07

Context (Doersch et al., 2015) 3.58

BEiT v2 (Peng et al., 2022) 4.93

Rotation (Gidaris et al., 2018) 11.21

Jigsaw++ (Noroozi et al., 2018) 13.67

FullRot (Ours) 5.73

FullRot + WRMix (Ours) 5.76
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Appendix

Training time cost

In real-world applications, computational resources are often lim-
ited. To assess the computational cost of tested models, we measure the
time during self-supervised training. The results, presented in Table 8,
indicate that 75% of the tested methods require less than 6 h during
training. FullRot with or without WRMix integration also exhibits less
than 6 h, 5.76 or 5.73 h, respectively, with only a marginal difference
of 0.03 h. Moreover, by only utilising two rotation classes per epoch,
FullRot significantly reduces training time, saving over 50% compared
to vanilla rotation.
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Fig. 8. The impact of (a) batch size and (b) the number of epochs of self-supervised pretraining on the performance.
Fig. 9. The impact of (a) minimum crop ratio m of FullRot, (b) minimum crop ratio c of WRMix, and (c) base bias b of WRMix.
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Table 9
The impact of batch shuffle and mask rotation (✗: cancel setting, ✓: use
setting).

Ablation Item Accuracy

Batch Shuffle ✗ 86.59

✓ 87.24 ↑𝟎.𝟔𝟓

Mask Rotation ✗ 86.76

✓ 87.24 ↑𝟎.𝟒𝟖

Extracurricular ablation

Implementation Details. For the implementation of self-supervised
training and validation, we followed the settings described in Sec-
tion 4.3, unless specified otherwise.

Batch Size. The choice of batch size has a significant impact on
the performance of self-supervised learning methods (Chen & He, 2021;
Chen, Kornblith, et al., 2020). To understand the effect of different
batch sizes on the FullRot + WRMix approach, we conducted experi-
ments. Due to the memory restriction of 24 GB on the RTX3090, the
maximum batch size we could use was 1024 images per iteration.
As shown in Fig. 8a, the experimental results indicate a gradual im-
provement in performance as the batch size increases from 64 to 1024
images, with accuracy rising from 83.90% to 87.24%. Such results
suggest that a larger batch size provides more general information
about image objects compared to a relatively small batch size, thereby
enhancing the effectiveness of FullRot + WRMix.

Pretraining Epochs. The number of epochs used for self-supervised
learning is an essential factor consideration in terms of computational
cost. We conducted experiments to analyse the impact of the number
of pretraining epochs on performance. The experimental results are
presented in Fig. 8b and indicate a significant increase in performance,
with a gain of over 0.8% classification accuracy, as the number of pre-
training epochs increases from 100 to 200. Subsequently, the accuracy
shows a slower growth, with an increase from 88.11% to 88.35% when
the number of pretraining epochs reaches 500. To balance computa-
tional resources and maintain a competitive performance, we chose 200
12

epochs for self-supervised pretraining.
Batch Shuffle. To mitigate the impact of loading the rotated im-
ages from the same source in adjacent locations within a batch, we
implemented a batch shuffle mechanism. Batch shuffling ensures that
all rotated images within a batch are randomly rearranged. As shown
in Table 9, when the batch shuffle is disabled, we observed a linear
accuracy decrease of 0.65%. Therefore, the order of rotated images
is irrelevant information and can negatively affect the representation
learning performance of FullRot + WRMix.

Mask Rotation of WRMix. In conventional methods such as Mixup,
utMix, and HMix, the orientation of the masked region for image
ynthesis remains constant. However, by introducing random mask
otation, a more diverse combination of image patches can be achieved.
he experimental results are demonstrated in the last column in Fig. 3,
here the mingling mask of two patches is rotated. By applying rota-

ion to the mask, it can be reshaped as an irregular polygon, further
nhancing the diversity of the composite image. The results presented
n Table 9 indicate that mask rotation boosts +0.48% linear accuracy

increment for FullRot + WRMix.
Crop Ratio of FullRot. The minimum crop ratio, denoted as m, for

FullRot is discussed in Section 3.1. The impact of varying m on the STL-
10 classification accuracy can be observed in Fig. 9a. As m increases
from 0.2 to 0.6, the accuracy improves from 84.48% to 87.24%, but
then drops to 87.11% when m is reduced to 0.8. Based on these results,
we have chosen the default value of m as 0.6.

Crop Ratio of WRMix. The minimum crop ratio of WRMix, denoted
as c, for WRMix is described in Eq. (6). Fig. 9b presents the results of the
STL-10 classification accuracy as c is varied. It shows that as c increases
from 0.1 to 0.5, the accuracy improves from 85.92% to 87.24%, but
declines to 86.00% when c reaches 0.8. The inverted U shape of Fig. 9b
indicates that neither a small (c = 0.8) nor extensive (c = 0.2) range
of the mask region of WRMix yields satisfactory results. To ensure an
appropriate diversity of mask side lengths, we recommend maintaining
c between 0.2 and 0.6. Among the tested values, we have selected 0.5
as the optimal value for c, as it corresponds to the highest performance.

Base Bias of WRMix. The base bias, denoted as b, for WRMix is
defined in Eq. (7). The impact of varying b on the performance of
FullRot + WRMix can be observed in Fig. 9c. The line graph in Fig. 9c
exhibits an ‘m’ shape, indicating that the most satisfactory performance,
with classification accuracies of 87.24% and 87.21%, can be achieved

by using either a b value of 0.2 or 0.7. These results suggest that
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