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FedOSS: Federated Open Set Recognition via
Inter-Client Discrepancy and Collaboration

Meilu Zhu , Jing Liao , Member, IEEE, Jun Liu , Member, IEEE, and Yixuan Yuan , Member, IEEE

Abstract— Open set recognition (OSR) aims to accurately
classify known diseases and recognize unseen diseases as
the unknown class in medical scenarios. However, in exist-
ing OSR approaches, gathering data from distributed sites
to construct large-scale centralized training datasets usu-
ally leads to high privacy and security risk, which could
be alleviated elegantly via the popular cross-site training
paradigm, federated learning (FL). To this end, we represent
the first effort to formulate federated open set recognition
(FedOSR), and meanwhile propose a novel Federated Open
Set Synthesis (FedOSS) framework to address the core
challenge of FedOSR: the unavailability of unknown sam-
ples for all anticipated clients during the training phase.
The proposed FedOSS framework mainly leverages two
modules, i.e., Discrete Unknown Sample Synthesis (DUSS)
and Federated Open Space Sampling (FOSS), to generate
virtual unknown samples for learning decision boundaries
between known and unknown classes. Specifically, DUSS
exploits inter-client knowledge inconsistency to recognize
known samples near decision boundaries and then pushes
them beyond decision boundaries to synthesize discrete
virtual unknown samples. FOSS unites these generated
unknown samples from different clients to estimate the
class-conditional distributions of open data space near
decision boundaries and further samples open data, thereby
improving the diversity of virtual unknown samples. Addi-
tionally, we conduct comprehensive ablation experiments to
verify the effectiveness of DUSS and FOSS. FedOSS shows
superior performance on public medical datasets in com-
parison with state-of-the-art approaches. The source code
is available at https://github.com/CityU-AIM-Group/FedOSS.

Index Terms— Open set recognition, federated learning,
medical image classification.

I. INTRODUCTION

W ITH recent advancements in deep learning techniques,
deep neural networks (DNNs)-based methods have

Manuscript received 21 May 2023; accepted 7 July 2023. Date
of publication 10 July 2023; date of current version 2 January
2024. This work was supported in part by the National Natural Sci-
ence Foundation of China under Grant 62001410; in part by the
Hong Kong Research Grants Council under Grant 11212321, Grant
11217922, Grant ECS-21207420, Grant ECS-21212720, and Grant
CRF-C4063-18G; in part by Hong Kong Special Administrative Region
(HKSAR) Innovation and Technology Commission (ITC) under Inno-
vation and Technology Fund (ITF) Project under Grant MHP/109/19;
and in part by the Science, Technology and Innovation Committee
of Shenzhen under Grant SGDX20210823104001011. (Corresponding
authors: Yixuan Yuan; Jun Liu.)

Meilu Zhu and Jun Liu are with the Department of Mechanical Engi-
neering, City University of Hong Kong, Hong Kong, SAR, China (e-mail:
meiluzhu2-c@my.cityu.edu.hk; jun.liu@cityu.edu.hk).

Jing Liao is with the Department of Computer Science, City University
of Hong Kong, Hong Kong (e-mail: jingliao@cityu.edu.hk).

Yixuan Yuan is with the Department of Electronic Engineering, The
Chinese University of Hong Kong, Hong Kong, SAR, China (e-mail:
yxyuan@ee.cuhk.edu.hk).

Digital Object Identifier 10.1109/TMI.2023.3294014

achieved remarkable performance on various medical classifi-
cation tasks [1], [2], [3]. However, these methods are usually
evaluated in a closed-set setting, in which categories in test set
are known and same as training set [4]. The closed-set setting
is typically unreasonable in real-world medical scenarios, since
rare or unknown diseases probably arise without any warning
and would be misclassified into one of the known diseases [4],
[5], [6], [7], [8], [9]. This problem poses an enormous risk to
the public health and impedes the application of intelligent
healthcare systems. Open-set recognition (OSR) [10], [11] is
thus proposed to solve this issue, which aims to accurately
classify known classes while at the same time identify open-set
data as the unknown class.

Despite the impressing performance of existing OSR meth-
ods [4], [5], [6], [7], [8], [9] in open-set setting, they heavily
depend on the availability of large-scale centralized datasets.
Since the data in a single medical institution are usually
limited, one common solution is to gather patient information
from different hospitals [12]. Yet, due to growing privacy
concerns or legal restrictions [13], distributed patient data are
not able to be directly shared across institutions. Federated
learning (FL) [14], [15] is a promising paradigm of decen-
tralized machine learning to provide a feasible solution to
this dilemma, which learns a global model by sharing the
model parameters of clients (hospitals) instead of their raw
data, under the orchestration of a trustworthy cloud server.
Nevertheless, implementing OSR in such a decentralized FL
framework is challenging and has not been investigated so far.
Driven by above realistic issues, in this paper, we represent
the first effort to formulate the problem of Federated Open Set
Recognition (FedOSR). The purpose of this setting is to unite
multiple distributed clients to learn a global model and reduce
privacy as well as security risk, which can exactly classify
known classes and recognize unknown classes in the testing
stage, as illustrated in Fig. 1(a).

The core challenge for FedOSR to recognize unknown data
is: Unknown samples are not available for all anticipated
clients during the training phase. In FedOSR, client models
will only focus on maximizing inter-known class distance and
enhancing intra-known class compactness [5], failing to learn
boundaries between known classes and unknown classes [16]
due to lacking unknown data. After client model aggregation,
the global model easily misclassifies an unknown sample into
one given known class with a high confidence score since
unknown classes might possess some similar features with
known classes [17]. Therefore, it is very crucial to acquire
unknown samples for FedOSR to learn the boundaries between
known classes and unknown classes. An elegant idea is to
synthesize virtual unknown data via generative adversarial
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Fig. 1. (a) Federated open set recognition. This setting aims to unite
multiple clients trained on known classes to learn a global model, which
can accurately classify known classes and recognize unknown samples
in test set. (b) Our solution to synthesize virtual unknown samples by
transforming known samples near decision boundaries.

networks (GAN) [16], [17], [18], [19], [20], [21], [22], [23]
or Mixup on known samples [7], [24], [25]. However, GAN
not only undergoes convergence difficulty [26], [27] in the
FL setting but also fails to exhaustively span the infinite open
world [5], [9]. Meanwhile, Mixup [28], a data augmentation
technique designed for centralized learning, would incur data
privacy leakage and high bandwidth cost in the distributed
setting. Hence, these methods [7], [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25] are not applicable to the FedOSR
scheme.

Differing from the above approaches [7], [16], [17], [18],
[19], [20], [21], [22], [23], [24], [25], we conquer this
intractable challenge from two new perspectives. (1) We are
dedicated to generating unseen data near decision boundaries
of known classes instead of fitting entire unknown space.
As we all know, open-set data are from an infinite space and
probably belong to multiple unknown classes. It is impossible
to synthesize samples of all unknown classes for learning
boundaries between known and unknown classes since the
training set does not provide any prior information about
unknown classes. By contrast, unknown samples near bound-
aries of known classes could provide rich information about
the boundary of open data [29], [30]. (2) Considering the infea-
sibility of leveraging GAN and Mixup to generate open-set
data in the FedOSR setting, we explore the recognition of
boundary samples of known classes and then exploit these
samples to synthesize open-set data. Intuitively, known and
unknown samples lying near class boundaries have small
geometric distance in latent feature space. They usually share
some common patterns and thus have high similarities. This
geometric view indicates that known boundary samples can
be converted to unknown boundary data through appropriate
transformation [31], [32], as shown in Fig. 1(b).

In this paper, we propose a novel framework, Federated
Open Set Synthesis (FedOSS), to achieve open set recogni-
tion for medical classification tasks in the federated learning
setting, which mainly contains two modules, i.e., Discrete
Unknown Sample Synthesis (DUSS) and Federated Open
Space Sampling (FOSS). Specifically, DUSS equips each
client model with a personalized classifier to represent the
personalization of these clients trained on Non-IID data, which
is collected and distributed to all clients by the server. Based on
the prediction inconsistency of these personalized classifiers,

we can recognize the boundary samples of known classes in
closed set. We push these known boundary samples beyond
decision boundaries to generate discrete unknown samples via
inversion updating. To further improve the diversity of virtual
unknown samples, FOSS estimates local class-conditional dis-
tributions of the generated discrete unknown samples at each
client and aggregates them into global distributions to span
continuous open space near decision boundaries. Each client
downloads the global distributions from the server and samples
diverse unknown samples from the low-likelihood region of
these distributions. With synthesized unknown samples from
DUSS and FOSS modules, FedOSS can learn boundaries
between known classes and unknown classes. The main con-
tributions of our work are summarized as follows:
• We propose a novel FedOSS framework to tackle a new

and realistic problem of Federated Open Set Recogni-
tion for medical classification tasks. To the best of our
knowledge, this work represents the first effort to unite
different institutions to achieve open set recognition in
medical scenarios.

• Discrete Unknown Sample Synthesis (DUSS) is devised
to recognize known samples near decision boundaries via
inter-client inconsistency in knowledge and exploits these
samples to generate discrete open data.

• Federated Open Space Sampling (FOSS) is designed
to unite the generated unknown samples of all clients
to fit global distributions of open space near decision
boundaries and samples open data to further improve the
diversity of virtual unknown samples.

• We conduct extensive experiments on public datasets to
evaluate the proposed framework. The results demonstrate
the superior performance of FedOSS against state-of-the-
arts and the effectiveness of different modules.

Roadmap: The rest of the paper is organized as follows.
We review previous OSR and FL methods in Section II.
In Section III, the proposed FedOSS is introduced in detail.
We describe the implementation details and verify the effec-
tiveness of the proposed FedOSS in Section IV. Finally, the
paper is closed with the conclusion in Section V.

II. RELATED WORK

A. Open Set Recognition

To deploy the classification models to real scenarios with
the high robustness, OSR is first proposed to improve the capa-
bility of detecting unknowns of models in [10]. Earlier works
were mainly based on traditional machine learning methods,
such as support vector machines (SVM) in [11], Extreme
Value Theory (EVT) in [33], the nearest neighbor in [34], and
so on. With the development of deep learning, deep neural
networks based OSR approaches have received significant
attention. As the earliest representative work, OpenMax [4]
replaces the softmax layer in the network and exploits Weibull
distribution to calibrate the output probability. Considering
that feature representation is not discriminative enough in
OpenMax, CROSR [35] further introduces an extra recon-
struction task to improve the learning of network. Similar to
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OpenMax, OVRN [9] exploits one-vs-rest units, i.e., sigmoid,
to replace the softmax layer. In addition, some prototype
based methods [5], [6] learn prototypes to represent known
classes and identify open-set samples based on distances to
the prototypes. These methods usually undergo the challenge
of tuning an optimal threshold to separate known and unknown
classes.

A recently popular solution for OSR is using the information
of known classes to simulate unknown examples. PROSER [7]
exploits the manifold mixup on the hidden representations
of different known classes to mimic novel patterns. SN [24]
regards the mixture of samples from the same class as known
classes and the mixture of samples from the different classes
as unknown classes to train a segregation network for novel
class detection. Oza and Patel [25] found that activation maps
of non-target classes present similar patterns to that of novel
classes. Thus, they mimicked the novel data by combining
features of known samples with activation maps of non-target
classes.

Other approaches mostly fall into the types of employ-
ing generative models to generate unknown samples.
G-OpenMax [22] improves OpenMax by adopting a condi-
tional generative network to synthesize unknown instances.
OSRCI [16], [18] develops encoder-decoder GAN archi-
tecture to generate counterfactual images as open data.
OpenGAN [19] uses outlier data to select the appropriate
GAN-discriminator for generating better fake open examples.
To simulate the real-world open space, DIAS [17] generates
virtual unknown samples with diverse difficulty levels via
GAN. For this type of approach, it is difficult to apply them
to the FL setting due to the training complexity of generative
models.

B. Federated Learning in Medical Image Classification
Federated learning (FL) aims to coordinate multiple clients

to learn a global model by transmitting local model parameters
instead of raw patient data [14]. Currently, FL has been widely
applied to a lot of medical image classification tasks. Exist-
ing approaches [13], [36], [37], [38], [39], [40], [41], [42],
[43], [44], [45], [46], [47] mainly focus on two intractable
challenges: data heterogeneity and annotation scarcity.

Approaches [13], [36], [37], [38], [39], [40], [41], [42]
concentrated on the data heterogeneity problem can be further
divided into two classes. The first type of methods [36],
[37], [38] try to improve the local training at the client side
when the local data of clients are heterogeneous. For example,
HarmoFL [36] collects amplitude information of images of
clients and generates a global amplitude, which is used to
normalize the frequency-space amplitude components of local
data into a unified space. Zhu and Luo [37] exploited the
global model and adversarial training to generate virtual data
similar to samples of other clients to eliminate the discrepancy
between clients. Another type of approaches [13], [39], [40],
[41], [42] are devoted to improving server aggregation of
local models trained on heterogeneous data. For instance,
IDA [39] uses the inverse distance of local models to the
average model as weights to aggregate these client models
and thereby weighting less the out-of-distribution models.

Considering that data heterogeneity causes the mismatching
problem of parameters of local models, Chen et al. [13], [40]
aggregated the low-frequency components of client parameters
while preserving the remaining high-frequency components to
achieve personalized federated learning. FedBN [41] handles
the non-iid issue by keeping client BN layers updated locally
and only fusing non-BN layers at the server.

Previous works [43], [44], [45], [46], [47] focusing on
annotation scarcity problem introduce the semi-supervised
setting into federated learning systems to train local models
via labeled and unlabeled data. For instance, Yang et al. [43]
united multi-national data with or without annotations from
China, Italy and Japan to learn a global model for the detection
of COVID-19. FedIRM [44] exploits the inter-class correlation
matrix estimated at labeled clients to supervise the learning of
local models at unlabeled clients. Besides, FedPerl [45] finds
multiple similar peers for each client to help it generate pseudo
labels for the unlabeled data. However, existing FL methods
on medical image classification [13], [36], [37], [38], [39],
[40], [41], [42], [43], [44], [45], [46], [47] only consider the
closed-set performance and ignore the possible occurrence of
novel classes in realistic scenes. In this work, we represent the
first effort to introduce open set recognition into FL to address
this practical problem.

III. FEDERATED OPEN SET SYNTHESIS

A. Problem Formulation and Overview

1) Problem Formulation: Due to growing privacy concerns,
in this paper, we develop the standard OSR to Federated Open
Set Recognition (FedOSR) to perceive unknown diseases and
reduce privacy as well as security risk. FedOSR follows the
standard FL setting, FedAvg [14], to unite C distributed clients
to learn a global model f with the parameters W under the
orchestration of the server. Each client has a local cohort
Dc

tr = {(xc
i , yc

i )} with K classes of known diseases, where
xc

i is a training instance with the label yc
i = {1, . . . , K }. The

client model f c with the parameters Wc can only access its
local dataset Dc

tr and is not allowed to share it with other
clients, where Wc contains the parameters Wc

f e of the feature
extractor and the parameters Wc

mc of the main classifier. After
training, the global model is evaluated with a real-world test
set Dte = {(xi , yi )}, where yi = {1, . . . , K , K + 1}, and the
class K + 1 is a group of unknown diseases and may contain
more than one class. FedOSR aims to accurately classify K
known diseases and recognize unknown diseases as the class
K + 1. However, since local datasets {Dc

tr }
C
c=1 do not provide

patient samples and prior information of unknown diseases,
local models fail to learn a boundary between known classes
and the class K +1. As a result, the global model obtained by
client model aggregation would always misclassify unknown
samples in Dte into known classes [4], [7].

2) Overview of FedOSS: To solve this problem, we propose
a Federated Open Set Synthesis (FedOSS) framework to
synthesize virtual open data for learning a boundary between
known classes and the class K + 1, as illustrated in Fig. 2.
The training of FedOSS proceeds through multiple rounds of
communication between clients and the server. Specifically,
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Fig. 2. The overview of the proposed FedOSS framework to federated open set recognition (Best view in color). FedOSS overcomes the challenge
in unavailability of open data via discrete unknown sample synthesis (DUSS) and federated open space sampling (FOSS). DUSS utilizes the client
discrepancy to recognize boundary samples, which are used to synthesize unknown samples via inversion updating. The generated unknown
samples from all clients are inputted into FOSS to estimate the distribution of open space for sampling diverse unknown data.

in each round, all clients download the parameters W of the
global model f as the initialization of local models { f c

}
C
c=1.

Then, the c-th client performs local training on its local data
Dc

tr to update the initial parameters W. During local training,
the discrete unknown sample synthesis (DUSS) module first
recognizes known samples near decision boundaries, and then
exploits them to synthesize discrete virtual unknown samples.
Next, these generated unknown samples are input into the
federated open space sampling (FOSS) module to estimate
the distributions of open data space near decision boundaries.
We further sample more open data from these distributions.
These synthesized open data of DUSS and FOSS are used to
help client models to learn decision boundaries for separating
known and unknown classes. In the end of each round, the
server gathers these updated local models and aggregate them
to update the global model f for the next iteration.

B. Discrete Unknown Sample Synthesis

The unavailability of unknown samples is the core barrier
to learn boundaries to separate known and unknown classes
in FedOSR. Although previous studies [7], [16], [17], [18],
[19], [20], [21], [22], [23], [24], [25], [48] on the standard
OSR have explored the feasibility of leveraging GAN [49]
and Mixup [28] to synthesize virtual unknown samples, they
possibly undergo the convergence difficulty and incur the high
risk of privacy leakage in the decentralized setting. To beak
this dilemma, we propose a discrete unknown sample synthesis

(DUSS) module to generate virtual discrete unknown data
using known samples for FedOSR. As shown in Fig. 2, DUSS
first leverages the knowledge discrepancy of clients to rec-
ognize known samples near decision boundaries. Then, these
boundary samples are pushed beyond decision boundaries
via inversion updating, and thereby transformed into discrete
virtual unknown samples.

1) Boundary Sample Recognition via Client Discrepancy:
A boundary sample is more likely to be misclassified due
to its small geometric distance to the decision boundary,
compared with an instance located at the cluster center. Such
an intrinsic characteristic inspires us to leverage the knowl-
edge discrepancy of client models trained on Non-IID local
data to recognize known samples near decision boundaries.
Specifically, besides the main classifier (Wc

mc), we equip each
client model f c with an extra personalized classifier of K
classes with parameters Wc

pc, following the feature extractor
(Wc

f e). Here, the personalized classifier only focuses on K
known classes while the main classifier not only predicts K
known classes but also recognizes unknown samples as the
class K + 1. In each round of communication, each client
uploads three parts of parameters, i.e., Wc

f e, Wc
mc, and Wc

pc,
to the server. The server aggregates the parameters {Wc

f e}
C
c=1

and {Wc
mc}

C
c=1 to update the global model f . We store the

parameters {Wc
pc}

C
c=1 of the personalized classifiers in a bank

�. Then, the global model f and the bank � are sent back to
each client. Noticeably, the personalized classifiers are usually
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lightweight, and thus transmitting the bank � does not incur
the high communication overhead.

Given the personalized classifier bank � = {Wc
pc}

C
c=1,

we define a score s for a known sample (xc
i , yc

i ) at the c-th
client, which indicates the geometric distance from the sample
xc

i to the cluster boundary of class yc
i :

s =
1
C

∑
Wc

pc∈�

I(yc
i , f c(xc

i , Wc
f e, Wc

pc)), � = {W
c
pc}

C
c=1, (1)

where yc
i is the label of the i-th sample of the c-th client.

f c(xc
i , Wc

f e, Wc
pc) is the prediction of the sample xc

i for the
c-th personalized classifier Wc

pc in the bank �. I(·) is a
function to check whether yc

i and f c(xc
i , Wc

f e, Wc
pc) are equal.

In Eq. (1), personalized classifiers of clients are trained on
Non-IID data, and thus their corresponding class boundaries
are significantly different. Samples with different distances
to class center regions will be misclassified by the different
numbers of personalized classifiers. Therefore, we can divide
known samples of the c-th client into three types based on the
score s. (1) If the score s of a sample xc

i is equal to 1, the
sample is classified accurately by the personalized classifiers
of all clients. This means that it is pretty close to the center
of class yc

i . (2) On the contrary, this sample is considered as
a hard one and outside the cluster of class yc

i when its score s
is equal to 0. (3) If the score s is between 0 and 1, the sample
xc

i would be located in decision boundary areas of class yc
i .

Meanwhile, the smaller score s indicates that the sample xc
i

is farther away from the center of class yc
i . Hence, relying

on the inter-client knowledge discrepancy, we can obtain a
boundary sample set Dc

bs = {x
c
i | 0 < s(xc

i ) < 1} at the
client c.

We use personalized classifiers of all clients to compute the
geometric distance, instead of main classifiers. Personalized
classifiers are uploaded to the server but are not aggregated,
and thus can maintain the discrepancy for recognizing bound-
ary samples. In contrast, main classifiers of all clients interact
with each other via server aggregation, leading to the high
similarity. If using the main classifiers to compute Eq. (1),
we will fail to recognize boundary samples since the score s
of one sample would always be 0 or 1.

2) Unknown Sample Synthesis via Inversion Updating: Kno-
wn boundary samples in Dc

bs , serving as the intermediary
between known and unknown classes, have high similarity
to open data near the decision boundary. Therefore, we pro-
pose transforming these boundary samples into open data via
inversion updating. Given a fixed client model f c

⋆ , the goal of
inversion updating is to iteratively optimize boundary samples
xc

i and push them beyond the decision boundary. This can
be implemented by updating xc

i to maximize the following
empirical classification risk over known classes,

min
xc

i

−L( f c
⋆ (Wc

f e, Wc
mc, xc

i ), yc
i ); (xc

i , yc
i ) ∼ D

c
bs, (2)

where L(·) is the standard cross-entropy loss. Eq.(2) provides
a fastest updating direction to push xc

i across the decision
boundaries, i.e., reversed gradient descent. Similar to adversar-
ial attack [50], we apply the inversion updating to xc

i multiple

times, and the update process of xc
i is formulated:

xc
i (0) = xc

i ,

xc
i (T + 1) = xc

i (T )+ λ∇xc
i
L( f c

⋆ (Wc
f e, Wc

mc, xc
i (T )), yc

i ),

(3)

where T is the times of updating and λ is the step size. With
inversion updating, we can transform boundary samples in Dc

bs

to obtain a discrete unknown samples set Dc
du = {x

c
i }
|Dc

du |

i=1 .
To reduce the computation cost caused by multiple times of
back-propagation in Eq (3), we perform inversion updating in
feature space instead of image space.

Compared with previous methods [16], [17], [18], [19],
[20], [21], [22], [23], [48] that exploit GAN to generate
virtual unknown samples, the proposed DUSS module does
not require a large amount of extra training time to learn the
generator. Besides, in contrast to Mixup based approaches [7],
[24], [25], synthesized unknown samples in Ddu of DUSS lie
near decision boundary areas of known classes and thus are
able to effectively enhance the compactness of known classes,
leaving more space for unknown classes. Furthermore, DUSS
emphasizes unknown boundary data near known classes,
which facilitates boundary learning, and separate known and
unknown classes.

C. Federated Open Space Sampling
Learning reliable boundaries between known and unknown

classes tends to rely highly on the diversity of open set [17],
[51]. Additionally, the unreliable boundaries of one client may
influence other clients via model aggregation and even harm
the performance of the overall federation [52] in the FedOSR
setting. To improve the diversity of virtual unknown samples
of clients, we propose a federated open space sampling (FOSS)
module to integrate the knowledge on the open space of all
clients to further generate diverse unknown data. As shown
in Fig. 2, each client uploads local statistics of synthesized
unknown samples in Dc

du to the server. These statistics are
aggregated to estimate global distributions for open space near
the decision boundaries. With the global distributions, each
client can sample diverse high-quality unknown samples to
improve the local training.

It is reported that the features learned by deep neural
networks can be theoretically approximated with a mix-
ture of Gaussian distribution [53], [54]. Therefore, the
virtual unknown samples of all clients near the decision
boundary of the known class k in {Dc

du}
C
c=1 follow a

global class-conditional multivariate Gaussian distribution
N (µk, 6k), where µk is the mean of these unknown samples
and 6k is the covariance matrix. To estimate the global µk
and 6k , we first compute local means {µc

k}
C
c=1 and covariance

matrixes {6c
k}

C
c=1 of all clients. Let {xc

k,i }
N̄ c

k
i=0 be the generated

unknown samples near the k-th known class at the client c,
where N̄ c

k is the number of samples, the local mean µc
k and

covariance matrix 6c
k can be computed as follows:

µc
k=

1
N̄ c

k

N̄ c
k∑

i=1

xc
k,i , 6c

k=
1

N̄ c
k − 1

N̄ c
k∑

i=1

(xc
k,i − µc

k)(x
c
k,i − µc

k)
T.

(4)
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Then, the local means {µc
k}

C
c=1 and covariance matrixes

{6c
k}

C
c=1 of all clients are transmitted to the server. With these

local statistics, the server estimates the global mean µk and
the global covariance matrix 6k straightforwardly according
to the following theorem:

Theorem 1: With the local means {µc
k}

C
c=1 and covariance

matrixes {6c
k}

C
c=1 of virtual unknown samples from C clients

near the known class k, the global mean µk and covariance
matrix 6k can be calculated:

µk =

C∑
c=1

N̄ c
k

N̄k
µc

k,

6k =

C∑
c=1

N̄ c
k − 1

N̄k − 1
6c

k +

C∑
c=1

N̄ c
k

N̄k − 1
µc

kµ
c
k

T
−

N̄k

N̄k − 1
µkµ

T
k ,

where N̄k is the total number of unknown samples near the
known class k, N̄k =

∑C
c=1 N̄ c

k .
After computing the global means {µk}

K
k=1 and covariance

matrixes {6k}
K
k=1, the server constructs a global bank 8 =

{N (µk, 6k)}
K
k=1 and distributes it to all clients. With the

global Gaussian distributions {N (µk, 6k)}
K
k=1, the client c

can randomly sample virtual unknown instances from the
ϵ-likelihood region of each distribution N (µk, 6k), yielding
a new unknown sample set Dc

f o = {D
c,k
f o }

K
k=1:

Dc,k
f o = {̂x

c
k,i | p(̂xc

k,i ) < ϵ}
Bk
i=1,

p(̂xc
k,i ) =

1

(2π)
D
2 |6k |

1
2

exp
(
−

1
2
(̂xc

k,i−µk)
T6−1

k (̂xc
k,i − µk)

)
,

(5)

where Dc,k
f o denotes the unknown sample subset near the class

k at the c-th client. D is the dimension of the instance x̂c
k,i

and Bk is the number of sampled virtual instances, |Dc
f o| =∑K

k=1 Bk . To obtain high-quality unknown samples x̂c
k,i in

experiments, we employ a small ϵ to guarantee the certain
distance between x̂c

k,i and decision boundaries. The global
distributions {N (µk, 6k)}

K
k=1 in the bank 8 contain global

statistics and can represent the knowledge on open space near
the decision boundaries from all clients. By sampling unknown
samples from the estimated continuous space, each client can
have enough high-quality unknown samples to learn reliable
boundaries between unknown and known classes.

Proof of Theorem 1. We first demonstrate the derivation of
global mean µk , which is estimated by aggregating {µc

k}
C
c=1:

µk =
1

N̄k

C∑
c=1

N̄ c
k∑

i=1

xc
k,i =

C∑
c=1

N̄ c
k

N̄k
·

1
N̄ c

k

N̄ c
k∑

i=1

xc
k,i =

C∑
c=1

N̄ c
k

N̄k
µc

k .

(6)

Next, we calculate the global covariance matrix 6k :

6k =
1

N̄k − 1

C∑
c=1

N̄ c
k∑

i=1

(xc
k,i − µk)(xc

k,i − µk)
T

=
1

N̄k − 1

C∑
c=1

N̄ c
k∑

i=1

xc
k,i (x

c
k,i )

T
−

1
N̄k − 1

C∑
c=1

N̄ c
k∑

i=1

xc
k,iµ

T
k

−
1

N̄k − 1

C∑
c=1

N̄ c
k∑

i=1

µk(xc
k,i )

T
+

1
N̄k − 1

C∑
c=1

N̄ c
k∑

i=1

µkµk
T.

(7)

By applying the identity µT
k =

1
N̄k

∑C
c=1

∑N̄ c
k

i=1 (xc
k,i )

T and
Eq. (6), both the second and third terms in Eq. (7) can be

rewritten as N̄k
N̄k−1

µkµ
T
k . With the identity

∑C
c=1

∑N̄ c
k

i=1 µk =

N̄kµk , the last term can be also simplified as N̄k
N̄k−1

µkµ
T
k .

Therefore, 6k in Eq. (7) can be rewritten as follows:

6k =
1

N̄k − 1

C∑
c=1

N̄ c
k∑

i=1

xc
k,i (x

c
k,i )

T
−

N̄k

N̄k − 1
µkµ

T
k . (8)

Similar to the global covariance matrix 6k , we also rewrite
the local covariance matrix 6c

k in Eq. (4) as

6c
k =

1
N̄ c

k − 1

N̄ c
k∑

i=1

xc
k,i (x

c
k,i )

T
−

N̄ c
k

N̄ c
k − 1

µc
k(µ

c
k)

T
. (9)

By rearranging Eq. (9), we can further acquire the identity∑N̄ c
k

i=1 xc
k,i (x

c
k,i )

T
= (N̄ c

k −1)6c
k+ N̄ c

k µc
k(µ

c
k)

T, and then apply
it into Eq. (8) to rewrite 6k :

6k =

C∑
c=1

N̄ c
k − 1

N̄k − 1
6c

k +

C∑
c=1

N̄ c
k

N̄k − 1
µc

kµ
c
k

T
−

N̄k

N̄k − 1
µkµ

T
k .

(10)

From Theorem 1, we can observe that the global mean
µk and covariance matrix 6k are only related to local means
{µc

k}
C
c=1 and covariance matrixes {6c

k}
C
c=1, and do not depend

on the original generated unknown samples at the client
side. Hence, FOSS does not incur the heavy communication
overhead and privacy leakage risk.

D. Overall Training
The proposed FedOSS framework aims to unite the private

data {Dc
tr }

C
c=1 of C clients to reduce known and unknown

space risk and learn a shared global model. The overall training
procedure of FedOSS includes pre-training and fine-tuning
stages, as shown in Algorithm III-C. We first pre-train the
feature extractor, the main and personalized classifiers via the
standard cross-entropy loss on known classes. Then, FedOSS
is fine-tuned by minimizing the following hybrid loss function
Ltotal :

Ltotal =
1
C

C∑
c=1

Lc
known + L

c
unknown + L

c
extra, (11)

where Lc
known reduces the empirical classification risk on the

local data Dc
tr to guarantee the performance of known classes,

which is defined as follows:

Lc
known = E(xc

i ,y
c
i )∼D

c
tr
LCE( f c(Wc

f e, Wc
mc, xc

i ), yc
i ), (12)

where LCE is the standard cross-entropy loss. If the main
classifier Wc

mc of K + 1 classes is only supervised by Lc
known,

it is able to distinguish K known classes and incapable of
perceiving unknown samples during testing since the training

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on October 22,2024 at 03:32:22 UTC from IEEE Xplore.  Restrictions apply. 



196 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 43, NO. 1, JANUARY 2024

Algorithm 1 The Proposed FedOSS Algorithm for Federated
Open Set Recognition
Input: The number client C , the class number K , the training

datasets {Dc
tr }

C
c=1, the number E of local epochs.

// Pre-training stage
1: Pre-training parameters W = {W f e, Wmc}, {Wc

pc}
C
c=1

using known samples in the FL setting.
// Fine-tuning stage

2: Server executes:
3: Initializing the bank � = {Wc

pc}
C
c=1, the global set: 8 =

{∅}.
4: for each communication round do
5: for each client c = 1, 2, . . . , C do
6: Wc, Wc

pc, {(µ
c
k, 6

c
k)}

K
k=1 ← ClientUpdate(W, �, 8)

7: end for
8: Aggregating models: W ←

∑C
c=1
|Dc

tr |
|Dtr |

Wc, |Dtr | =∑C
c=1 |Dc

tr |.
9: Aggregating local distributions {(µc

k, 6
c
k)}

K
k=1 of clients

via Theorem 1 to update the global distribution set: 8←

{N (µk, 6k)}
K
k=1.

10: Updating the personalized classifier bank: � ←

{Wc
pc}

C
c=1.

11: end for
12: ClientUpdate(W, �, 8): // Running on client c
13: for each epoch e = 1, 2, . . . , E do
14: Randomly selecting a batch of known samples from Dc

tr
for computing the loss terms Eq. (12) and Eq. (14).

15: Synthesizing the discrete unknown samples set Dc
du via

DUSS.
16: Sampling the unknown samples Dc

f o from the non-empty
8 via FOSS.

17: Exploiting Dc
du and Dc

f o to calculate the loss term
Eq. (13).

18: Minimizing the total loss in Eq. (11) to update Wc and
Wc

pc.
19: end for
20: Collecting samples in Dc

du to estimate local distributions
{µc

k, 6
c
k)}

K
k=1.

21: Uploading Wc, Wc
pc and {µc

k, 6
c
k)}

K
k=1 to the server.

Output: The global model W = {W f e, Wmc}.

set Dc
tr does not contain unknown classes. The proposed

DUSS and FOSS can utilize boundary samples in Dc
bs to

obtain two virtual unknown samples sets Dc
du = {x

c
i }
|Dc

du |

i=1 and

Dc
f o = {x

c
i }
|Dc

f o|

i=1 . We use these unknown samples to minimize
Lc

unknown to reduce open space risk, which is formulated as:

Lc
unknown = E(xc

i ,y
c
i )∼D

c
du
LCE( f c(Wc

f e, Wc
mc, xc

i )\y
c
i , K + 1),

+ E(̂xc
i ,y

c
i )∼D

c
f o
LCE( f c(Wc

f e, Wc
mc, x̂c

i )\y
c
i , K + 1),

(13)

where yc
i is the corresponding original known class of xc

i /̂xc
i .

f c(Wc
f e, Wc

mc, x̂c
i )\y

c
i denotes removing the prediction prob-

ability of the class yc
i , which reduces the effect of some

low-quality unknown samples on the performance of known
classes. Lc

extra is used to optimize the parameters Wc
pc of the

personalized classifier:

Lc
extra = E(xc

i ,y
c
i )∼D

c
tr
LCE( f c(Wc

f e, Wc
pc, xc

i ), yc
i ). (14)

Considering that the personalized classifier Wc
pc does not

participate in the model aggregation, we do not allow the
gradients from it to update the parameters Wc

f e in experiments,
thereby reducing its effect on the global model.

IV. EXPERIMENTS

A. Datasets
To investigate the effectiveness of our FedOSS framework,

we evaluate it on two different types of medical datasets.
1) Microscopic Peripheral Blood Cell Dataset: The PBC [55]

dataset contains 17,092 microscopic images of peripheral nor-
mal blood cells, which can be divided into 8 categories. These
images are acquired using the analyser CellaVision DM96 and
labelled by expert clinical pathologists at the Hospital Clinic
of Barcelona. We follow the work [56] to split all images into
training, validation, and test sets using a ratio of 7 : 1 : 2.

2) Gastrointestinal Endoscopy Dataset: We collect 10,662
endoscopic images of the gastrointestinal tract from Hyper-
Kvasir dataset [57] and divide these samples into 15 classes
according to the location in the gastrointestinal tract and the
types of findings. Among these classes, 10 classes belong to
the lower gastrointestinal tract, and the rest is from the upper
gastrointestinal tract. We randomly partition all samples into
training, validation, and test sets with a ratio of 7 : 1 : 2.

3) 3D Organ Classification Dataset: We also perform experi-
ments on a 3D organ classification dataset from the liver tumor
segmentation benchmark [58], which contains CT scans of
201 patients. Based on the bounding-box annotations in the
work [59], we crop 11 classes of 3D body organs and finally
obtain 1743 volumes to perform multi-class classification. All
samples are randomly divided into training, validation, and test
sets with a ratio of 7 : 1 : 2.

B. Experiment Setup
1) Implementation Details: The proposed FedOSS and com-

parison methods [4], [5], [6], [7], [8], [9] are implemented with
PyTorch library. We adopt the ResNet-18 [61] as the backbone
network of all methods for two 2D datasets, which is converted
to 3D networks for the organ dataset via ACSConv [62]. The
number of clients is set to 8, 8 and 16 for 3D organ, PBC
and HyperKvasir datasets, respectively. During the pre-training
stage, client models are trained using the Adam [63] optimizer
with the initial learning rate of 5 × 10−4 for 100 epochs on
both the PBC and 3D organ datasets, and for 200 epochs on
the HyperKvasir dataset. Their batch sizes are set to 4, 8 and 8,
respectively. The learning rate is divided by 2 every 25 epochs
for the PBC and 3D organ datasets, and every 50 epochs for the
HyperKvasir dataset. During the fine-tuning stage, we utilize
the Adam optimizer with a fixed learning rate of 1× 10−4 to
finetune FedOSS for 30 epochs on the three datasets. The step
sizes λ and updating times T of inversion updating are set to
0.1, 1.0, 1.0 and 1, 5, 1 for PBC, HyperKvasir and 3D organ
datasets, respectively. Similar to existing FL works [64], [65],
we use Dirichlet distribution on label ratios to simulate the
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TABLE I
THE PERFORMANCE COMPARISON OF THE PROPOSED METHOD AND EXISTING METHODS ON BLOOD CELL DATASETS

Non-IID data distribution among clients. We set the Dirichlet
parameter as 0.5 to ensure the high data heterogeneity.

2) Configuration of Closed and Open Set: To investigate the
effect of the number U of unknown classes, we compare
FedOSS with previous works [4], [5], [6], [7], [8], [9] in
two cases for each dataset. In the first case (U = 3) of
the PBC dataset, we randomly sample 5 classes as known
classes and the remaining 3 classes as unknown classes.
In another case (U = 5), we randomly sample 3 classes
as known classes and the remaining 5 classes as unknown
classes. Considering that the HyperKvasir dataset is extremely
unbalanced, we randomly sample 6 classes from the top
9 categories in number as known classes. In the first case (U =
3), we select 3 classes from the remaining as unknown classes.
All remaining 9 classes are regarded as unknown classes in the
second case (U = 9). For the 3D organ dataset, we randomly
sample 7 classes as known classes and the remaining 4 classes
as unknown classes in the first case (U = 4). In another
case (U = 7), four classes are randomly sampled as known
classes and the remaining 7 classes as unknown classes. For
all datasets, the unknown classes are removed from training
and validation sets and the training set is divided into local
clients based on Dirichlet distribution. The test set contains
known classes and unknown class and is used to verify the
performance of the global model.

3) Evaluation Metrics: To measure the classification per-
formance of the proposed FedOSS framework in open set
scenarios, we adopt commonly-used classification metrics,
including accuracy (ACC), F1 score (F1-score), recall score
(Recall), and precision score (Precision) on the known classes
and the unknown class.

C. Comparisons With State-of-the-Art Methods

We compare our FedOSS framework with Softmax and the
state-of-the-art OSR approaches [4], [5], [6], [7], [8], [9] on
both microscopic and endoscopic datasets. For a fair compar-
ison, these OSR approaches are implemented in the standard
FL framework using the same dataset splits as FedOSS for
each dataset.

1) Experimental Results on Microscopic Dataset: In Table I,
we present the classification performance of different methods
on the microscopic dataset to validate the proposed FedOSS.
It can be observed that prototype based approaches [5], [6]

outperform the baseline Softmax with pretty large margins,
which indicate that thresholding distances between prototypes
of known classes and unknown samples to reject open data
is more effective than thresholding softmax based confi-
dence scores. Our FedOSS suppresses the best prototype
based approach, i.e., CAC [6], with significant performance
increments for two cases, such as 5.31% in F1-score for
U = 3 and 8.06% in ACC for U = 5. Compared with CAC,
FedOSS directly learns the boundary between known classes
and the unknown class by synthesizing unknown data instead
of depending on thresholding. Additionally, compared with
SSB [8] that utilizes various strategies to learn more tight
clusters of known classes, such as more augmentation, better
learning rate schedules, and label smoothing, FedOSS obtains
better performance with significant increments, such as 2.01%
in F1-score (U = 3) and 9.45% in ACC (U = 5), since it
utilizes synthesized unknown data to improve the tightness
of known classes and learn boundaries between known and
unknown classes. Furthermore, we can also find that most of
previous methods [4], [5], [6], [7], [8] undergo performance
degradation when the number U of unknown classes increases.
In contrast, the performance of FedOSS is stable with the num-
ber U of unknown classes. These experimental results on the
microscopic dataset can confirm that the proposed FedOSS is
superior to previous methods in recognizing unknown samples.

2) Experimental Results on Endoscopic Dataset: In Table III,
we further compare the proposed FedOSS framework with
previous approaches [4], [5], [6], [7], [8], [9] on the endoscopic
dataset. In contrast to the baseline Softmax, the best prototype
based method, CAC [6], only yields limited performance
improvements, especially in the case of U = 9, such as merely
1.56% in Precision and 1.71% in F1-score. By comparison,
FedOSS outperforms the baseline Softmax with enormous
increments in the case of U = 9, such as 11.08% in Precision
and 13.55% in F1-score. The performance advantages can
indicate that directly learning the boundary between known
classes and the unknown class to recognize open data is
more effective than thresholding distances between prototypes
of known classes and unknown samples when the number
of unknown classes increases. PROSER [7] achieves the
second-best classification performance in the case of U = 3
but obtains inferior results in the case of U = 9. On the
contrary, OVRN [9] performs better in the case of U = 9

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on October 22,2024 at 03:32:22 UTC from IEEE Xplore.  Restrictions apply. 



198 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 43, NO. 1, JANUARY 2024

TABLE II
THE PERFORMANCE COMPARISON OF THE PROPOSED METHOD AND EXISTING METHODS ON ENDOSCOPY DATASET

TABLE III
THE PERFORMANCE COMPARISON OF THE PROPOSED METHOD AND EXISTING METHODS ON 3D ORGAN CLASSIFICATION DATASET

TABLE IV
THE PERFORMANCE OF THE PROPOSED FEDERATED OPEN SET RECOGNITION FRAMEWORK WITH DIFFERENT MODULES

TABLE V
THE PERFORMANCE OF THE PROPOSED DISCRETE UNKNOWN SAMPLE SYNTHESIS (DUSS) MODULE WITH DIFFERENT CONFIGURATIONS

than PROSER [7] but shows bad performance in the case
of U = 3. Compared with PROSER [7], and OVRN [9], our
FedOSS framework demonstrates the best performance in both
two cases and exceeds them by a large margin in Precision and
F1-score, such as 2.79% and 2.22% in contrast to PROSER [7]
for the case of U = 3, and 3.05% and 3.35% in contrast
to OVRN [9] for the case of U = 9. These experimental
results further prove that the proposed FedOSS can recognize
open-set classes and achieve better performance than existing
methods.

3) Experimental Results on 3D Organ Dataset: We further
compare the proposed FedOSS framework with previous
approaches [4], [5], [6], [7], [8], [9] on the 3D organ clas-
sification dataset, as shown in Table III. It can be observed
that, for the case of U = 4, FedMix [60] yields the excellent
performance among existing methods, such as 77.75% in ACC
and 80.78% in Precision. Noticeably, the proposed FedOSS
outperforms FedMix with considerable margins, such as 2.67%
in ACC and 4.58% in Precision. Additionally, the performance
of existing methods [5], [6], [7], [8], [9] is sensitive to the
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number of unknown classes. For instance, PROSER undergoes
an enormous performance drop when the number of unknown
classes increases to 7, achieving 51.77% in ACC and 64.51%
in Precision with decrements of 26.45% and 15.45%, respec-
tively. By comparison, our method does suffer from a slight
drop and outperforms all previous methods with the highest
performance, such as 78.32% in ACC and 80.86% in Precision
with decrements of merely 2.10% and 4.50%, respectively.
These experimental results prove that the proposed FedOSS
can also perform well on 3D medical data and achieve
the superior performance in contrast to the state-of-the-art
methods.

D. Ablation Study
DUSS and FOSS are pivotal components for FedOSS to

recognize open data. We conduct ablation experiments on the
gastrointestinal dataset to investigate the effectiveness of these
modules and provide some visualization results.

1) Evaluation of Different Modules: FedOSS is implemented
based on the standard FedAvg [14] with softmax, which is
regarded as the baseline. To evaluate the efficacy of individual
modules, we combine the baseline with different modules.
As shown in Table IV, DUSS promotes the baseline with
remarkable performance improvements in two cases, such as
9.81% in ACC and 5.84% in Precision for U = 3, 11.83% in
ACC and 7.27% in Precision for U = 9, which highlight the
importance of synthesized unknown samples. The proposed
FedOSS, i.e., the baseline equipped with DUSS and FOSS
simultaneously, achieves the best performance in two cases,
especially in the case of U = 9, with the increments of 4.72%
in ACC and 3.81% in Precision in comparison with ‘Base-
line + DUSS’. This indicates that FOSS can help FedOSS to
learn the higher quality of boundary between known classes
and the unknown class and still obtain a high performance even
when the number of unknown classes increases. These results
confirm the effectiveness of the DUSS and FOSS modules.

2) Ablative Experiments on DUSS Module: Boundary sample
recognition (BSR) and inversion updating (IU) are two crucial
steps for DUSS to synthesize unknown samples. We inves-
tigate their efficacy by comparing the following settings.
1) DUSS (w/o BSR): DUSS regards all known samples as
the virtual unknown class and does not conduct inversion
updating; 2) DUSS (IU = T ): DUSS selects out boundary
samples via the client discrepancy and then conducts T times
of inversion updating. From Table V, we observe that the
setting ‘DUSS (IU = 0)’ obtains the better performance
than the setting ‘DUSS (w/o BSR)’. This result verifies the
importance of boundary sample recognition. In addition, the
settings DUSS (IU > 0) outperform the setting ‘DUSS (IU =
0)’. Meanwhile, the model can yield the better classification
performance as the times T of inversion updating increases.
The results manifest that the sufficient inversion updating can
transform boundary samples into virtual unknown samples.

The proposed strategy of boundary sample recognition can
be viewed as a kind of uncertainty estimation method for
measuring the distance between a sample and the decision
boundary. To verify its superiority, we compare it with existing
methods (including Method A [66] and Method B [67]) on

Fig. 3. The performance of FOSS module with different configurations
on endoscopy dataset.

Fig. 4. Visualization of the learned feature space of different approaches
on endoscopy dataset. Best viewed in color.

the endoscopy dataset. In Method A [66], a training instance
would have high uncertainty if its prediction changes after
being imposed a strong perturbation. Method B [67] deter-
mines the distance from the decision boundary by computing
the difference between the probability of the true label and
the probability of the most confusing label (with the second
highest probability). As shown in Table VI, the proposed
strategy outperforms Method B [67] with large margins in the
two cases, such as 9.03% in ACC and 9.36% in F1-score in
the case of U = 3, and 15.25% in Precision and 11.35% in
F1-score in the case of U = 9. The performance advantages
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TABLE VI
THE PERFORMANCE COMPARISON OF DIFFERENT STRATEGIES FOR BOUNDARY SAMPLE RECOGNITION ON ENDOSCOPY DATASET

Fig. 5. The confusion matrixes of the baseline (Softmax) and our
FedOSS on endoscopy dataset.

highlight that exploiting inter-client discrepancy to estimate
the uncertainty of samples is more accurate. In contrast, the
existing methods can only use information of single client and
are unsuitable for the distributed setting.

3) Ablative Experiments on FOSS Module: We further ver-
ify the effectiveness of the local distribution aggregation
(LDA) (FOSS w/ LAD) and the selection of high-quality
unknown samples from ϵ-likelihood region of global distribu-
tions (FOSS w/ Select.) in FOSS. The baseline setting is our
FedOSS framework equipped with DUSS. In Fig. 3, it can be
seen that both settings ‘FOSS w/ LAD’ and ‘FOSS w/ Select.’
outperform the baseline. Additionally, only when FOSS is
configured with the two components simultaneously, FedOSS
obtains the highest performance in the two cases. These results
prove that FOSS can aggregate the knowledge of different
clients in the open space and enhance the diversity of virtual
unknown samples to improve the performance of FedOSS.

4) Visualization: We visualize the learned feature space of
different approaches on the endoscopy dataset to observe the
distribution of known classes and the unknown class, as shown
in Fig. 4. The unknown class actually contains three categories
of unknown samples. For the clear observation, we randomly
select and visualize three classes of known samples. From
Fig. 4(a), we can see that most of unknown samples are
scattered and mixed with the known classes 1 and 2 when the

model is trained only using softmax. After we select boundary
samples as virtual unknown samples to update the model
(DUSS (T = 0)) Fig. 4(b), the boundaries between known
classes and the unknown class become slightly clear, which
are clearer after imposing inversion updating on these selected
boundary samples in Fig. 4(c). Relying on DUSS and FOSS
modules, FedOSS learns compact feature representations and
clearly separates known classes and the unknown class in
Fig. 4(d). These visualization results are able to verify the
effectiveness of the proposed FOSS framework.

We further visualize the confusion matrixes of the baseline
(Softmax) and our FedOSS on the endoscopy dataset, as shown
in Fig. 5. We observe that the baseline method nearly classifies
all unknown samples into the known classes, with the accuracy
of merely 2.84% (U=3) in Fig. 5(a) and 9.31% (U=9) in
Fig. 5(b). In contrast, our FedOSS shows a superior ability in
rejecting unknown classes, with an accuracy of 83.48% (U=3)
and 66.24% (U=9). Meanwhile, our method still demonstrates
the excellent performance in known classes. The experimen-
tal results confirm the effectiveness of the generated virtual
unknown samples in our FedOSS framework for learning
boundaries between known and unknown classes.

V. CONCLUSION AND DISCUSSION

In this paper, we propose a novel framework for federated
open set recognition, Federated Open Set Synthesis (FedOSS),
which contains two modules, i.e., Discrete Unknown Sam-
ple Synthesis (DUSS) and Federated Open Space Sampling
(FOSS). DUSS leverages the knowledge discrepancy between
clients to recognize known samples near boundaries and then
transforms them into discrete virtual unknown samples via
inversion updating. FOSS unites these virtual unknown sam-
ples of all clients to estimate global distributions of open space
near boundaries, which is used to sample diverse unknown
samples. Relying on these synthesized open data of DUSS and
FOSS modules, FedOSS can learn decision boundaries to sep-
arate known classes and unknown classes. The comprehensive
experiments on microscopic and endoscopic datasets validate
the effectiveness of FedOSS. The results on both two datasets
show the superior performance of FedOSS in contrast to state-
of-the-art methods. In ablation experiments, we first verify the
importance of the DUSS and FOSS modules of FedOSS, and
then deeply analyze the impact of vital components in the
two modules. Finally, visualization results further confirm the
ability of our FedOSS framework to separate unknown and
known classes in the feature space.

There are two limitations when directly applying our
FedOSS framework into the realistic medical scenes.
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(1) FedOSS suffers from the data security risk during com-
munication process. Although it follows the basic rule of
federated learning [68] and does not share the raw data of
clients. However, local client models might be stolen by
intruders for the reconstruction of original data. For this prob-
lem, we are able to apply existing homomorphic encryption
techniques [68], [69] to encrypt client models and the global
model. (2) FedOSS performs well when label distributions
of clients are heterogenous, but it will face challenges for
heterogeneous feature distributions. Feature distribution het-
erogeneity indicates that feature distributions among clients
have the overlapping area and specific areas [70]. The samples
lying in the overlapping area are more likely to be accurately
classified by all clients, and the samples located in specific
areas are usually misclassified. However, the misclassified
samples are not necessarily boundary samples. Therefore,
our method might fail to recognize boundary samples. For
this issue, we can introduce existing methods [36], [71] to
align feature spaces of different clients, thus ensuring that our
method can still achieve the good performance.

REFERENCES

[1] A. Esteva et al., “Dermatologist-level classification of skin cancer
with deep neural networks,” Nature, vol. 542, no. 7639, pp. 115–118,
Feb. 2017.

[2] M. Zhu, Z. Chen, and Y. Yuan, “DSI-Net: Deep synergistic interac-
tion network for joint classification and segmentation with endoscope
images,” IEEE Trans. Med. Imag., vol. 40, no. 12, pp. 3315–3325,
Dec. 2021.

[3] Z. Chen, J. Liu, M. Zhu, P. Y. M. Woo, and Y. Yuan, “Instance
importance-aware graph convolutional network for 3D medical diag-
nosis,” Med. Image Anal., vol. 78, May 2022, Art. no. 102421.

[4] A. Bendale and T. E. Boult, “Towards open set deep networks,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,
pp. 1563–1572.

[5] H. Yang, X. Zhang, F. Yin, Q. Yang, and C. Liu, “Convolutional
prototype network for open set recognition,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 44, no. 5, pp. 2358–2370, May 2022.

[6] D. Miller, N. Sünderhauf, M. Milford, and F. Dayoub, “Class anchor
clustering: A loss for distance-based open set recognition,” in Proc. IEEE
Winter Conf. Appl. Comput. Vis. (WACV), Jan. 2021, pp. 3569–3577.

[7] D. Zhou, H. Ye, and D. Zhan, “Learning placeholders for open-set
recognition,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2021, pp. 4399–4408.

[8] S. Vaze, K. Han, A. Vedaldi, and A. Zisserman, “Open-set recognition:
A good closed-set classifier is all you need,” in Proc. Int. Conf. Learn.
Represent. (ICLR), 2022.

[9] J. Jang and C. O. Kim, “Collective decision of one-vs-rest networks
for open-set recognition,” IEEE Trans. Neural Netw. Learn. Syst., early
access, Jul. 14, 2022, doi: 10.1109/TNNLS.2022.3189996.

[10] W. J. Scheirer, A. de Rezende Rocha, A. Sapkota, and T. E. Boult,
“Toward open set recognition,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 7, pp. 1757–1772, Jul. 2013.

[11] W. J. Scheirer, L. P. Jain, and T. E. Boult, “Probability models for open
set recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 11,
pp. 2317–2324, Nov. 2014.

[12] A. Xu et al., “Closing the generalization gap of cross-silo federated
medical image segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2022, pp. 20834–20843.

[13] Z. Chen, M. Zhu, C. Yang, and Y. Yuan, “Personalized retrogress-
resilient framework for real-world medical federated learning,” in Proc.
MICCAI. Cham, Switzerland: Springer, 2021, pp. 347–356.

[14] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. AISTATS, 2017, pp. 1273–1282.

[15] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” in Proc. MLSys,
vol. 2, 2020, pp. 429–450.

[16] L. Neal, M. Olson, X. Fern, W.-K. Wong, and F. Li, “Open set learning
with counterfactual images,” in Proc. ECCV, 2018, pp. 613–628.

[17] W. Moon, J. Park, H. S. Seong, C.-H. Cho, and J.-P. Heo, “Difficulty-
aware simulator for open set recognition,” in Proc. ECCV, 2022,
pp. 365–381.

[18] Z. Yue, T. Wang, Q. Sun, X. Hua, and H. Zhang, “Counterfactual zero-
shot and open-set visual recognition,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 15399–15409.

[19] S. Kong and D. Ramanan, “OpenGAN: Open-set recognition via open
data generation,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2021, pp. 793–802.

[20] S. Girish, S. Suri, S. Rambhatla, and A. Shrivastava, “Towards dis-
covery and attribution of open-world GAN generated images,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 14074–14083.

[21] G. Chen, P. Peng, X. Wang, and Y. Tian, “Adversarial reciprocal points
learning for open set recognition,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 44, no. 11, pp. 8065–8081, Nov. 2022.

[22] Z. Ge, S. Demyanov, and R. Garnavi, “Generative OpenMax for multi-
class open set classification,” in Proc. Brit. Mach. Vis. Conf., 2017,
pp. 42.1–42.12.

[23] Y. Hsu, Y. Shen, H. Jin, and Z. Kira, “Generalized ODIN: Detecting
out-of-distribution image without learning from out-of-distribution data,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2020, pp. 10948–10957.

[24] S. Bhattacharjee, D. Mandal, and S. Biswas, “Multi-class novelty
detection using mix-up technique,” in Proc. IEEE Winter Conf. Appl.
Comput. Vis. (WACV), Mar. 2020, pp. 1389–1398.

[25] P. Oza and V. M. Patel, “Utilizing patch-level category activation patterns
for multiple class novelty detection,” in Proc. ECCV, 2020, pp. 421–437.

[26] W. Li, J. Chen, Z. Wang, Z. Shen, C. Ma, and X. Cui, “IFL-
GAN: Improved federated learning generative adversarial network
with maximum mean discrepancy model aggregation,” IEEE Trans.
Neural Netw. Learn. Syst., early access, Apr. 26, 2022, doi:
10.1109/TNNLS.2022.3167482.

[27] X. Wu, H. Huang, H. Wang, Y. Wang, and Q. Xu, “EP-GAN: Unsuper-
vised federated learning with expectation-propagation prior GAN,” 2022.
[Online]. Available: https://openreview.net/forum?id=djwnKXz1B2

[28] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “Mixup: Beyond
empirical risk minimization,” in Proc. ICLR, 2018.

[29] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.,
vol. 20, pp. 273–297, Apr. 1995.

[30] K. Sun, Z. Zhu, and Z. Lin, “Enhancing the robustness of deep neural
networks by boundary conditional GAN,” 2019, arXiv:1902.11029.

[31] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in Proc. Int. Conf. Learn. Represent. (ICLR),
2014.

[32] J. Zhang, J. Zhu, G. Niu, B. Han, M. Sugiyama, and M. Kankanhalli,
“Geometry-aware instance-reweighted adversarial training,” in Proc. Int.
Conf. Learn. Represent. (ICLR), 2021.

[33] E. M. Rudd, L. P. Jain, W. J. Scheirer, and T. E. Boult, “The extreme
value machine,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 3,
pp. 762–768, Mar. 2018.

[34] P. R. M. Júnior, T. E. Boult, J. Wainer, and A. Rocha, “Open-set support
vector machines,” 2016, arXiv:1606.03802.

[35] R. Yoshihashi, W. Shao, R. Kawakami, S. You, M. Iida, and
T. Naemura, “Classification-reconstruction learning for open-set recog-
nition,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 4011–4020.

[36] M. Jiang, Z. Wang, and Q. Dou, “HarmoFL: Harmonizing local and
global drifts in federated learning on heterogeneous medical images,” in
Proc. AAAI, 2022, vol. 36, no. 1, pp. 1087–1095.

[37] W. Zhu and J. Luo, “Federated medical image analysis with virtual
sample synthesis,” in Proc. MICCAI. Cham, Switzerland: Springer, 2022,
pp. 728–738.

[38] J. Wicaksana, Z. Yan, X. Yang, Y. Liu, L. Fan, and K. Cheng,
“Customized federated learning for multi-source decentralized medical
image classification,” IEEE J. Biomed. Health Informat., vol. 26, no. 11,
pp. 5596–5607, Nov. 2022.

[39] Y. Yeganeh, A. Farshad, N. Navab, and S. Albarqouni, “Inverse distance
aggregation for federated learning with non-IID data,” in Proc. MICCAI
Workshop Distrib. Collaborative Learn. Cham, Switzerland: Springer,
2020, pp. 150–159.

[40] Z. Chen, C. Yang, M. Zhu, Z. Peng, and Y. Yuan, “Personalized
retrogress-resilient federated learning toward imbalanced medical data,”
IEEE Trans. Med. Imag., vol. 41, no. 12, pp. 3663–3674, Dec. 2022.

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on October 22,2024 at 03:32:22 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TNNLS.2022.3189996
http://dx.doi.org/10.1109/TNNLS.2022.3167482


202 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 43, NO. 1, JANUARY 2024

[41] X. Li, M. Jiang, X. Zhang, M. Kamp, and Q. Dou, “FedBN: Federated
learning on non-IID features via local batch normalization,” in Proc. Int.
Conf. Learn. Represent. (ICLR), 2021.

[42] W. Lu et al., “Personalized federated learning with adaptive batchnorm
for healthcare,” IEEE Trans. Big Data, early access, May 23, 2022, doi:
10.1109/TBDATA.2022.3177197.

[43] D. Yang et al., “Federated semi-supervised learning for COVID
region segmentation in chest CT using multi-national data from
China, Italy, Japan,” Med. Image Anal., vol. 70, May 2021,
Art. no. 101992.

[44] Q. Liu, H. Yang, Q. Dou, and P.-A. Heng, “Federated semi-supervised
medical image classification via inter-client relation matching,” in Proc.
MICCAI. Cham, Switzerland: Springer, 2021, pp. 325–335.

[45] T. Bdair, N. Navab, and S. Albarqouni, “FedPerl: Semi-supervised
peer learning for skin lesion classification,” in Proc. MICCAI, 2021,
pp. 336–346.

[46] M. Jiang, H. Yang, X. Li, Q. Liu, P.-A. Heng, and Q. Dou, “Dynamic
bank learning for semi-supervised federated image diagnosis with class
imbalance,” in Proc. MICCAI, 2022, pp. 196–206.

[47] X. Liang, Y. Lin, H. Fu, L. Zhu, and X. Li, “RSCFed: Ran-
dom sampling consensus federated semi-supervised learning,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022,
pp. 10144–10153.

[48] Y. Yu, W.-Y. Qu, N. Li, and Z. Guo, “Open-category classification by
adversarial sample generation,” in Proc. IJCAI, 2017, pp. 3357–3363.

[49] I. Goodfellow et al., “Generative adversarial networks,” Commun. ACM,
vol. 63, no. 11, pp. 139–144, 2020.

[50] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial exam-
ples in the physical world,” in Proc. Artif. Intell. Saf. Secur., 2018,
pp. 99–112.

[51] S. Cui, S. Wang, J. Zhuo, L. Li, Q. Huang, and Q. Tian, “Towards
discriminability and diversity: Batch nuclear-norm maximization under
label insufficient situations,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2020, pp. 3940–3949.

[52] X.-C. Li and D.-C. Zhan, “FedRS: Federated learning with
restricted softmax for label distribution non-IID data,” in Proc. 27th
ACM SIGKDD Conf. Knowl. Discovery Data Mining, Aug. 2021,
pp. 995–1005.

[53] X. Sun, Z. Yang, C. Zhang, K. Ling, and G. Peng, “Conditional
Gaussian distribution learning for open set recognition,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 13477–13486.

[54] Q. Wang, P. Li, and L. Zhang, “G2DeNet: Global Gaussian distribu-
tion embedding network and its application to visual recognition,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 6507–6516.

[55] A. Acevedo, A. Merino, S. Alférez, Á. Molina, L. Boldú, and J. Rodellar,
“A dataset of microscopic peripheral blood cell images for development
of automatic recognition systems,” Data Brief, vol. 30, Jun. 2020,
Art. no. 105474.

[56] J. Yang et al., “MedMNIST v2: A large-scale lightweight benchmark for
2D and 3D biomedical image classification,” 2021, arXiv:2110.14795.

[57] H. Borgli et al., “HyperKvasir, a comprehensive multi-class image and
video dataset for gastrointestinal endoscopy,” Sci. Data, vol. 7, no. 1,
pp. 1–14, Aug. 2020.

[58] P. Bilic et al., “The liver tumor segmentation benchmark (LiTS),” Med.
Image Anal., vol. 84, Feb. 2023, Art. no. 102680.

[59] X. Xu, F. Zhou, B. Liu, D. Fu, and X. Bai, “Efficient multiple organ
localization in CT image using 3D region proposal network,” IEEE
Trans. Med. Imag., vol. 38, no. 8, pp. 1885–1898, Aug. 2019.

[60] T. Yoon, S. Shin, S. J. Hwang, and E. Yang, “FedMix: Approximation
of mixup under mean augmented federated learning,” in Proc. Int. Conf.
Learn. Represent. (ICLR), 2021.

[61] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[62] J. Yang et al., “Reinventing 2D convolutions for 3D images,” IEEE J.
Biomed. Health Informat., vol. 25, no. 8, pp. 3009–3018, Aug. 2021.

[63] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[64] D. A. E. Acar, Y. Zhao, R. M. Navarro, M. Mattina, P. N. Whatmough,
and V. Saligrama, “Federated learning based on dynamic regularization,”
2021, arXiv:2111.04263.

[65] L. Gao, H. Fu, L. Li, Y. Chen, M. Xu, and C. Xu, “FedDC: Federated
learning with non-IID data via local drift decoupling and correction,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2022, pp. 10102–10111.

[66] W. Hua, Y. Zhang, C. Guo, Z. Zhang, and G. E. Suh, “BulletTrain:
Accelerating robust neural network training via boundary example
mining,” in Proc. NIPS, vol. 34, 2021, pp. 18527–18538.

[67] V. Koltchinskii and D. Panchenko, “Empirical margin distributions and
bounding the generalization error of combined classifiers,” Ann. Statist.,
vol. 30, no. 1, pp. 1–50, Feb. 2002.

[68] P. Kairouz et al., “Advances and open problems in federated learning,”
Found. Trends Mach. Learn., vol. 14, nos. 1–2, pp. 1–210, 2019.

[69] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu, “BatchCrypt:
Efficient homomorphic encryption for cross-silo federated learning,” in
Proc. USENIX ATC, 2020, pp. 493–506.

[70] S. Cui et al., “Decentralized federated learning via overlapping data
augmentation,” in Proc. ICLR, 2023, pp. 1–18.

[71] F. Yu et al., “Fed2: Feature-aligned federated learning,” in Proc. KDD,
2021, pp. 2066–2074.

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on October 22,2024 at 03:32:22 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TBDATA.2022.3177197

