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Long-Term Active Object Detection for Service
Robots: Using Generative Adversarial Imitation
Learning With Contextualized Memory Graph
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Abstract—Active object detection (AOD) is a crucial task
in embodied artificial intelligence within robotics. Previous
works mainly address this challenge through deep rein-
forcement learning (DRL), characterized by prolonged train-
ing cycles and model convergence difficulties. Moreover,
they often emphasize whether a single AOD task can be
completed, overlooking the reality that robots perform long-
term AOD tasks. To this end, this article introduces a new
AOD solution utilizing a graph based on generative adver-
sarial imitation learning (GAIL). A new expert strategy is
devised using the active vision dataset benchmark (AVDB),
generating high-quality expert trajectories. Meanwhile, a
new AOD model based on GAIL is proposed to predict
the robot’s execution actions. Moreover, a contextualized
memory graph (CMG) is constructed, providing partial state
information for the GAIL model and enabling the robot to
directly make decisions based on the humanlike memory
function. Experimental validation against existing methods
in AVDB demonstrates superior results, achieving an 88.8%
action prediction accuracy, reducing average path length
(APL) to 12.182 steps, and shortening single-step action
prediction time to 0.133 s. The proposed method is further
evaluated in a real-world home scene, affirming its efficacy
and generalization capabilities.

Index Terms—Active vision, contextualized memory
graph (CMG), generative adversarial imitation learning
(GAIL), long-term active object detection (AOD), service
robot.

I. INTRODUCTION

I
N recent years, embodied artificial intelligence (AI) has gar-

nered significant attention as a mechanism enabling an agent

to interact with its environment and actively learn intelligent

behaviors [1]. Within service robotics, as a key embodied AI
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task [2], active object detection (AOD) can guide a robot to

autonomously make decisions based on environmental infor-

mation, assisting it in completing home service tasks related to

objects.

How to define AOD? In computer vision, object detection

takes an image as input and utilizes a detector, such as Faster

R-CNN [3], SSD [4], and YOLO [5], to recognize objects.

For the static images, the technology has achieved very sig-

nificant results, but this passive detection method is unsuit-

able for robotics [6]. When a robot performs service tasks,

it involves many object-related operations, such as grasping

[7] and moving [8]. However, the initial distance between the

robot and the object typically lies beyond the operational range.

Consequently, the robot must not only detect the object but also

steadily approach it [9], ultimately observing it from the optimal

perspective, as shown in Fig. 1.

Considering the importance of AOD, many research has fo-

cused on how to address this problem. Ammirato et al. built an

active vision dataset benchmark (AVDB), and the REINFORCE

algorithm was employed [10]. Subsequent studies [2], [6], [9],

[11] also treated AOD as a Markov decision process, leveraging

deep reinforcement learning (DRL) to achieve it. Then, Liu

et al. approached AOD as a simple action classification problem

and addressed it using behavior cloning (BC) [12]. Ding et al.

utilized an integrated framework combining online decision

transforms methodologies [13], constructing an AOD model

via a blend of offline pretraining and online fine-tuning [2].

Although learning-based approaches have effectively addressed

the AOD problem, there are still several issues that need to be

resolved.

1) Effectiveness and Generalization: When using DRL to

address AOD, the agent gathers numerous erroneous ex-

periences, and it is difficult to design an optimal reward

function. These will lead to inefficiencies in model train-

ing and performance limitations [12].

2) State Space: The previous studies [2], [6], [9], [10], [12]

took RGB images or bounding boxes as the state space,

but they only used the robot’s sensory information. Later,

long-short term memory (LSTM) was employed in [14],

while it enriched the model’s state information on the

temporal level. No research has considered incorporating

home structural characteristics into state information from

a spatial perspective.
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Fig. 1. Illustration of an AOD task. (a) AOD process in a 2-D plan view.
(b) First-person view of the service robot.

3) Long-Term AOD: Existing researches focus on whether

individual AOD tasks can be completed accurately and

efficiently, overlooking the reality of multiple executions

AOD tasks in the same scene. In long-term AOD, robots

need not only the ability to make decisions in the face

of new states but also the memory function of historical

states, allowing the accumulation of historical tasks to

provide experience for later AOD tasks.

To address these challenges, this article introduces a novel

method centered around the generative adversarial imitation

learning (GAIL) [15] framework. Since training an agent based

on GAIL requires a large amount of expert data, there is cur-

rently no public expert dataset for the AOD task. To address

it, leveraging the original AVDB and utilizing NetworkX [16]

along with the A∗ algorithm [17], we introduce a novel expert

strategy that can automatically and efficiently generate high-

quality expert data. In consideration of real-world applications

where a service robot executes AOD multiple times for a long

time within a home scene, we encapsulate the scene information

encountered by the robot during task execution in a graph

called contextualized memory graph (CMG). To improve the

performance of the GAIL model, we incorporate CMG as a

component of the generator input. Additionally, although the

structure of CMG is simple, its memory function can help

the robot to participate in action decision-making, significantly

improving the efficiency of long-term AOD tasks. The main

contributions are concluded as follows.

1) A new AOD method based on the GAIL is proposed to

help service robots efficiently to complete long-term AOD

tasks in complex and dynamic home environments.

2) A novel expert strategy is proposed to generate the expert

data for training the GAIL model. This strategy can ensure

that the trajectories in expert data are relatively short while

including the target object in each view.

3) Considering the long-term nature of the AOD task, a

simple yet effective CMG is constructed. The home spa-

tial structure feature obtained from CMG can be used

as part of the input of the GAIL generator. Meanwhile,

the CMG can also directly participate in AOD action

decision-making with its memory function.

4) Comparative experiments against other methods and abla-

tion study are conducted using AVDB to demonstrate the

efficiency of our method. Meanwhile, real-environment

AOD task testing further validates our method.

The rest of this article is organized as follows. We first outline

the related work in Section II. Second, the proposed method

is described in detail in Section III. Then, the experiments in

AVDB and the real-world scenario are implemented in Section

IV. Finally, Section V concludes this article with conclusions

and future work.

II. RELATED WORK

According to the traditional robot navigation paradigm, we

need to create a map in an environment and use path-planning

algorithm to realize AOD [8], [18]. However, when faced with

unseen scenes, these methods need to rebuild the map, which

is inconvenient in practice. Due to the advancements in DRL,

recent research on AOD has predominantly adopted a learning-

based approach. Specifically, Ammirato et al. collected visual

data such as RGB images from multiple real home scenes to

build an AVDB, and the baseline algorithm REINFORCE was

employed [10]. Based on it, Han et al. designed a multistep

action prediction model to enhance the accuracy and efficiency

of AOD tasks [6]. To leverage historical trajectory information,

an AOD model incorporating an LSTM module was proposed

[14]. To further utilize the trajectory information, Ding et al.

proposed an integrated framework combining online Decision

Transforms methodologies [13]. Furthermore, to bring the robot

closer to the target object for a better perspective, Liu et al.

devise a new DRL reward function based on the target object’s

bounding box [9]. However, when using DRL to address AOD,

the early collection of a substantial amount of negative re-

ward experiences by the agent during training can significantly

impact model training negatively. Additionally, designing an

optimal reward function poses a challenge. Sparse rewards [19],

[20] or relying solely on local state determinations [9] can lead

to model instability and the agent getting stuck in suboptimal

loops, thus impacting task accuracy. Instead of maximizing

a reward, Kotar and Mottaghi [21] and Wortsman et al. [22]

trained an AOD model on a sequence of images to maximize

the detection results of the first frame and used a meta-learning

framework. Considering the slow training of DRL models, Liu

et al. approached AOD as a simple action classification problem

and addressed it using BC [12]. However, this article does not

provide a detailed elucidation of how the optimal expert path

with the shortest length and the best object observation was gen-

erated. Moreover, some studies [23], [24], [25] have employed

a graph to establish the relationship between objects, assisting

robot in indoor navigation, localization, and predicting scene

change. Diverging from these conventional methods, this article

utilizes the CMG to represent the spatial structure of home

scenes, with the aim of enhancing the cognitive capabilities of

agents regarding their surroundings.

III. PROPOSED METHOD

A. Problem Statement

Imagine a scenario where a homeowner spots an apple on a

nearby table. To quickly reach the apple, the person would take

the shortest path to the table while keeping their eyes on the
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Fig. 2. Composition of AVDB. (a) Image collection point map (Mic).
(b) RGB image dataset (Irgb). (c) Target objects (Os).

apple. We want robots to learn this behavior, so AOD needs to

meet the following two perspectives.

1) Efficiency: The robot should complete an AOD task with

as few steps as possible.

2) Accuracy: The target object should remain within the

robot’s field of view.

AOD requires a robot to not only detect the target object

but also continuously navigate toward the object and observe it

from a relatively optimal view. Given the need to detect objects,

AOD assumes that the target object is already present in the

robot’s initial view. When executing an AOD task, the robot

primarily uses visual information received from its camera as

input. In this article, to enrich the input data, we also incorporate

spatial structure information about the environment. Based on

the input, the robot predicts the most accurate action from

seven possible discrete actions: forward, backward, left, right,

rotate_ccw (counterclockwise rotation), rotate_cw (clockwise

rotation), done. The done action allows the robot to automati-

cally terminate the task. An AOD task is considered successful

if the following conditions are met: the robot avoids collisions

with obstacles during task execution, maintains the target object

within its field of view, and has the target object within 1 m

when the done action is executed.

B. Expert Data Generation for AOD

The new AOD expert dataset is generated by leveraging exist-

ing AVDB. As shown in Fig. 2, each scene in AVDB primarily

consists of Mic, Irgb, and Os. Additionally, the annotation files

Fat in AVDB document the bounding boxes of objects, along

with action connection between images. Specifically, the gen-

erating process of an expert trajectory will be illustrated using

a hunts sauce in the scene Home_005_2 as an example.

1) Constructing a Scene Topology Network (STN): The STN

is constructed by using the Fat and a network analysis

tool NetworkX, as shown in Fig. 3. In the STN, cyan

nodes represent RGB images collected from Irgb, while

gray edges signify the action between two images.

2) Generating an Initial Trajectory: Utilizing the STN,

existing path-planning algorithm A∗ can determine the

initial shortest trajectory Et = [I1, I2, . . ., Ie] between a

start state I1 and an end state Ie. However, not all nodes

within the trajectory contain the target object, as shown in

the grayscale images in steps 6 and 7 of Fig. 3. So, further

optimization of the initial trajectory is necessary.

3) Optimizing the Initial Trajectory Et: Traversing all tra-

jectory points Ii (i ∈ [1, e]) in Et sequentially, if hunts

sauce appears in the RGB image corresponding to Ii, it

Fig. 3. STN is centrally positioned. The blue path depicts the initial
trajectory, while the red path illustrates the optimized expert trajectory.
Distributed around are first-person views of the robot at different times.

is retained in Et in its original order. Otherwise, it needs

to return to Ii−1 and reselect image points from the i−1

step. Specifically, based on Fat, identify all image points

P = [p1, p2, . . ., p6] connected to Ii−1. Then, successively

use the images in P to determine the shortest trajectories

E
′

t−j(j ∈ [1, 6]) of every new initial state to the end state

Ie. Subsequently, calculate the view departure length for

each trajectory

lj = Lj − Num(E
′

t−j) (1)

where Lj represents the length of the new subtrajectory,

and Num(E
′

t−j) denotes the number of images containing

the hunts sauce. The smaller the lj is, the better the quality

of the new subtrajectory is. Select E
′

t−j corresponding to

the minimum value and use it to replace the trajectory

from Ii to Ie in the initial trajectory Et. Then, traverse

the new trajectory points in E
′

t−j and repeat the aforemen-

tioned process. Eventually, an optimized trajectory Ėt is

obtained. The optimized trajectory, illustrated as the red

trajectory in Fig. 3, is visually represented by RGB images

labeled with numbers.

The expert trajectory consists of binary trajectory points

in the form of (s,a). After obtaining the optimal path Ėt,

the connection action a between image points can be de-

termined based on Fat, then the expert trajectory T =
[(s1, a1), (s2, a2), . . . , (se, ae)] can be obtained. Finally, we

generate a total of 53 452 expert trajectories.

C. GAIL-AOD Model

The overall framework of the GAIL-based AOD model

(GAIL-AOD) is shown in Fig. 4. The network structure of the

discriminator is composed of multi-layer perception (MLP).

The generator is the core part of GAIL-AOD, which consists

of the state feature extraction network and the asynchronous

advantage actor–critic (A3C) network. The state feature extrac-

tion network comprises the observation stream and the CMG

(see Section II-C for constructing details) stream. The former
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Fig. 4. Overall framework of GAIL-AOD model.

mainly comprises an RGB image, the bounding box of the

target object, and action sequence A. Initially, we employ the

SE-ResNet50 [26] to extract the feature from the RGB image.

Regarding sequence A, we subject it to encoding processing:

actions feasible in the current state are encoded as 1, whereas

others are encoded as 0. After synthesizing the three feature

vectors, they are fed into the LSTM module, resulting in a 1024

dimensions output feature, denoted as N1.

In the CMG stream, we select all nodes within a n-step

distance from the robot’s current node to construct a sub-CMG.

Subsequently, the graph feature extraction (GFE) is performed

on the subnetwork. This module draws on the principles of

graph convolution network: assuming the adjacency matrix,

degree matrix, and feature matrix of S-CMG are denoted as

AN×N , DN×N , and HN×D, respectively, where N represents

the number of nodes and D represents the node feature dimen-

sion. Then, we can extract the feature N2 of S-CMG

N2 = σ[W × (D̃−
1
2 × Ã× D̃−

1
2 ×H)] (2)

where σ represents the activation function ReLu, and W 1×N is

a weight matrix. If the current time step is t, and the establish-

ment time step of each node in S-CMG is tk (k = 1, 2, ..., T),

then

W = [e−(t−t1), e−(t−t2), . . . , e−(t−tT)] (3)

where e−(t−tk) is defined as the time decay factor. By concate-

nating the output features N1 and N2, we can obtain N

N = Concatenate(N1, N2). (4)

Upon inputting the concatenated N into the A3C network, the

actor network can derive the predicted action, while the critic

network can assess and score the execution of the predicted

action in the current state.

D. CMG

The simple but efficient CMG represents the spatial struc-

ture of the home scene where a robot is located in the form

of a graph, as shown in Fig. 5(a). We denote the CMG as

Fig. 5. (a) Example for establishing the CMG. (b) Local memory carried
by the CMG.

G= (V,E), where V and E represent nodes and connecting

edges between nodes, respectively. Each node v ∈ V is recorded

as a triplet of position and orientation:

v = (x, y, β) (5)

where (x, y) represents the 2-D coordinates of the robot in the

home space, and β represents the orientation. Each node in

CMG stores the feature information of the corresponding RGB

image. Assuming that vt is (xt, yt, βt) at time t, then vt+1 is as

follows:

(xt + d× cos(βt + α), yt + d× sin(βt + α), βt + α) (6)

where d and α represent the distance and angle of the robot

movement. If the robot takes the action Rotate_ccw, α takes a

positive value, otherwise it takes a negative value. Each edge

in E represents the action relationship between two nodes. For

example, from (0, 0, 0) to (0, 0, 30), the action between these

two nodes is Rotate_ccw.

In addition, CMG also carries a local memory (LM), as

shown in Fig. 5(b), which is used to record the name of the target

object, the bounding box, and the historical action. It is worth

noting that to maximize the auxiliary performance of CMG

for the long-term AOD task, this article does not store action

into the LM after each execution, only when the AOD task is

successfully completed, and the actions will be stored in the

corresponding nodes. Since each scene and the objects within

it are different, the CMG and its LM are also unique. When

performing tasks in a new scene, the agent needs to recreate

and continuously update the CMG.

E. Overall Method of the Long-Term AOD

The overall execution process of a long-term AOD task is as

shown in Fig. 6. If the current state st has been stored in the

nodes of CMG, the robot will enter the memory search stage;

otherwise, it will directly perform single-step action prediction

using the GAIL-AOD model. In the memory search stage, the

robot first tries to use the CMG and A∗ algorithm to plan the

shortest path Ts directly from st to the stored end state se. If

possible, the robot will execute the actions [at, at+1, . . ., ae]

obtained from Ts in sequence until it encounters the termination
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Fig. 6. Entire AOD process using the GAIL-AOD model with a CMG.

Algorithm 1: The Process of Each Step in the Long-Term AOD.

Require: Current state st, target object ot, the CMG and the

learned GAIL-AOD model.

Ensure: An optimal planned path Ts or a predicted action at.

1: if Ts is generated by the A∗ algorithm using CMG then

2: Return Ts

3: else if Ot exists in the CMG and o satisfies condition (7)

then

4: Get the stored historical action at
5: Return at
6: else

7: Use Ot to predict at via the GAIL-AOD model

8: Return at
9: end if

action ae. If Ts cannot be obtained due to incompleteness of

the CMG, the action will be obtained with single-step action

prediction. During this process, if the historical action execution

information corresponding to the target object in the current

state can be queried in the CMG and satisfy (7) compared with

the historical record value, the robot will directly execute the

action at.

IoU > uth (7)

where IoU represents the intersection over the union of the

current and historical bounding boxes. uth is a threshold be-

longing to the range 0–1. If the above condition is not met,

the robot needs to use the state information of st to predict

the action in real time. Repeat the above steps until the done

action is raised. In short, at each time step, based on the current

state information, the robot either directly obtains the shortest

planned path or uses the GAIL-AOD model or CMG to perform

single-step action prediction to obtain an executable action, as

shown in Algorithm 1.

TABLE I
DATASET SPLIT IN OUR EXPERIMENT

Train Scenes Test Scenes Split

Home_001_1, Home_003_1,
Home_004_1, Home_005_1,
Home_007_1, Home_010_1,
Home_011_1, Home_014_1,
Home_015_1, Home_016_1

Home_001_2,
Home_005_2,
Home_014_2

Split1 (KE)

Home_002_1,
Home_006_1,
Home_008_1

Split2 (UE)

TABLE II
PRIMARY PARAMETERS FOR GAIL-AOD MODEL

Parameter Value Parameter Value

Image size 224 × 224 Agent numbers 4
Discount factor 0.99 Epoch 5000
Batch size 128 Tau 0.95

IV. EXPERIMENTS

A. Dataset and Setup

AVDB simulates the activity process of a service robot in

real indoor scenes. Currently, the dataset includes 17 household

scenes and two office scenes, with over 30 000 RGB-D images

and over 70 000 2-D bounding boxes of objects. We divide

AVDB into two splits: Split1 and Split2, as shown in Table I.

Split1 is mainly used to test the generalization of models when

the environment is known (KE), but the position of target ob-

jects is changed. Correspondingly, Split2 tests in a completely

unknown environment (UE).

All experiments are conducted on a single GeForce RTX

3090 GPU. The GAIL-AOD model is trained by an Adam op-

timizer with a learning rate of 0.0003 to optimize the MLP and

the A3C network. Table II provides other training parameters.

To assess the performance of different methods, three metrics

are selected: success rate (SR), APL, and average decision time

(ADT). SR represents the effectiveness of various methods

SR =
count(Td)

count(Tall)
(8)

where count(Td) and count(Tall), respectively, represent the

number of successful and total AOD tasks. APL evaluates task

execution efficiency from the perspective of path length

APL =

∑
z∈Td

(PL)z

count(Td)
(9)

where PL represents the path length of a successful task z.

ADT accesses the robot’s decision-making speed from a time

perspective, denoted as

ADT =

∑
z∈Td

∑
d∈z(DT)d

∑
z∈Td

(PL)z
(10)

where DT represents the time it takes to make a decision d.

Additionally, to evaluate the computational burden of each

method, metrics such as floating point operations (FLOPs),

memory usage, GPU utilization (GPU-Util), and the minimum
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Fig. 7. Comparison of the accuracy of different AOD models, including
average and deviation values. (a) Test in KE. (b) Test in UE.

TABLE III
TEST RESULTS OF DIFFERENT METHODS

Method
KE UE Average

SR APL ADT SR APL ADT SR APL ADT

Random 0.039 5.706 0.007 0.073 8.659 0.007 0.056 7.183 0.007

Forward 0.005 3.170 0 0.012 6.324 0 0.009 4.747 0

REINFORCE [10] 0.541 8.565 0.341 0.384 8.480 0.353 0.463 8.523 0.347

DQN [9] 0.765 13.130 0.547 0.576 14.780 0.576 0.671 13.955 0.562

DQN-C [6] 0.645 18.410 0.501 0.454 21.880 0.511 0.550 20.145 0.506

D3QN 0.760 11.320 0.645 0.620 15.250 0.631 0.690 13.285 0.638

D3QN-C 0.605 13.360 0.636 0.470 15.581 0.603 0.538 14.471 0.620

BC [12] 0.814 12.476 0.551 0.774 18.434 0.495 0.794 15.455 0.523

GAIL-AOD 0.868 16.516 0.702 0.818 17.436 0.554 0.843 16.976 0.628

BC-G 0.852 10.993 0.137 0.809 15.817 0.215 0.831 13.405 0.176

Ours 0.907 11.989 0.144 0.869 12.375 0.121 0.888 12.182 0.133

Note: The bold entries indicate the best result for each metric.

number of epochs (Min-Epochs) required for model conver-

gence are considered.

B. Results and Analysis

To demonstrate the advantages of our method, ten compara-

tive experiments are conducted.

1) Random: Randomly select an action at each step.

2) Forward: Only forward action is performed.

3) REINFORCE: The baseline policy used in [10].

4) DQN: A deep Q-learning model using prioritized experi-

ence replay in [9].

5) DQN-C: The reward function is determined based on the

instance classification value [6], [10].

6) D3QN: Upon the foundation of DQN, a double Q-learning

training strategy is incorporated alongside the introduc-

tion of a dueling network structure.

7) D3QN-C: Similar to D3QN, but the reward function is the

same as DQN-C.

8) BC: The network structure is an MLP, and an auxiliary

revision method is designed [12].

9) GAIL-AOD: Using only our proposed GAIL-AOD model.

10) BC-G: The BC algorithm combined with our proposed

CMG memory function.

11) Ours: The proposed overall method involves the GAIL-

AOD model and incorporating the CMG memory

function.

Fig. 8. Proportion of path length ranges for successful AOD tasks in
different models. (a) KE. (b) UE.

TABLE IV
COMPARISON OF COMPUTATIONAL BURDEN AMONG DIFFERENT METHODS

Method GFLOPs ADT Memory Usage (GB)GPU-Util (Average/Max)Min-Epochs

REINFORCE 1.342 0.347 1.589 0.201/0.422 395

DQN 3.671 0.562 2.972 0.262/0.507 276

DQN-C 3.671 0.506 2.970 0.257/0.462 283

D3QN 3.721 0.638 3.237 0.318/0.580 251

D3QN-C 3.721 0.620 3.237 0.325/0.610 280

BC 7.837 0.523 4.651 0.425/0.720 37

GAIL-AOD 4.155 0.628 4.178 0.316/0.660 18

BC-G 7.837 0.176 3.953 0.307/0.620 −

Ours 4.155 0.133 3.537 0.235/0.680 −

Note: The bold entries indicate the best result for each metric.

To avoid the incidental nature of experimental outcomes,

each set of experiments is conducted thrice. During the eval-

uation, the average and deviation values of the accuracy for

different learning-based models are illustrated in Fig. 7. The test

results are recorded in Table III. Fig. 8 shows the proportion of

successful AOD tasks between different step intervals. Table IV

compares the computational burden of different methods using

metrics such as FLOPs, ADT, and GPU-Util. In Fig. 9, an AOD

task execution process based on different methods is visualized.

Combining all the above experimental results, the following

conclusions can be drawn.

1) Figs. 7 and 8 show that, whether in KE or UE, our model

achieves convergence with fewer training iterations and

exhibits optimal performance. The distribution of step

numbers is also closest to the expert policy. The quick

model convergence is due to the presence of expert data,

eliminating the need for inefficient exploration. The expert
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Fig. 9. Visualizing the execution process of an AOD task: a demon-
stration showcasing the detection of “canned clam soup,” where the red
bounding box indicates the recognized object. The different methods are
as follows: (a) REINFORCE; (b) DQN; (c) D3QN-C; (d) BC; and (e) Ours.

data constructed in this article are of high quality and

efficiency. The “high quality” enables the agent to learn

correct behaviors, improving action prediction accuracy

compared to [12]. The “high efficiency” ensures that the

agent completes AOD tasks with the fewest possible steps.

These two factors together enable the agent to accomplish

various difficulty levels in AOD tasks.

2) Table III shows that our proposed GAIL-AOD model has

the highest accuracy. Specifically, it achieves a 6.2% per-

formance improvement over the latest method [12]. This

improvement is mainly due to considering the local spatial

information of the robot in the model input, enhancing the

robot’s spatial structure cognition. The APL value also

indicates that the GAIL-AOD model can complete rela-

tively difficult long-distance AOD tasks. When the CMG

memory mechanism is added, the overall method achieves

a performance boost, with an average accuracy reaching

88.8%, a 4.5% increase over the standalone GAIL-AOD

model. This improvement is mainly due to the CMG mem-

ory mechanism, which allows the robot to directly execute

the correct action stored in the CMG when facing the same

state, rather than relying solely on the GAIL-AOD model

for action prediction. The assistance of CMG enhances the

execution efficiency of AOD tasks, especially achieving

an ADT value of 0.133 s, proving that our method is more

suitable for long-term AOD task execution in the same

home scenario.

3) According to IV, the FLOPs value of our GAIL-AOD

model is larger than that of RL-based models but 47%

lower than the latest method [12]. This reduction is mainly

due to replacing the complex residual network used for

deep information extraction with a simple but efficient

CMG spatial representation and its special feature ex-

traction method, GFE. Although the GAIL-AOD model

has relatively higher computational complexity and re-

source requirements, it requires fewer training iterations,

significantly improving training efficiency. Additionally,

TABLE V
TEST RESULTS USING DIFFERENT EXPERT STRATEGIES

Expert

Strategy
P-L T-O

KE UE Average

SR APL SR APL SR APL

Heuristic strategy − X 0.676 19.254 0.651 18.382 0.664 18.818

NetworkX + A∗
X − 0.377 10.582 0.320 14.357 0.349 12.470

Ours X X 0.907 11.989 0.869 12.375 0.888 12.182

Note: The bold entries indicate the best result for each metric.

TABLE VI
TEST RESULTS WITH DIFFERENT APPLICATIONS OF CMG

State

Input
Action

Decision

KE UE Average

SR APL ADT SR APL ADT SR APL ADT

− − 0.621 21.299 0.601 0.576 25.975 0.527 0.599 23.137 0.564

X − 0.868 16.516 0.702 0.818 17.436 0.554 0.843 16.976 0.628

− X 0.728 15.475 0.179 0.687 12.403 0.154 0.708 13.939 0.167

X X 0.907 11.989 0.144 0.869 12.375 0.121 0.888 12.182 0.133

Note: The bold entries indicate the best result for each metric.

for long-term AOD tasks, our model’s average action pre-

diction speed is faster. Especially compared to BC, our

overall method requires fewer computational resources,

making it more suitable for practical deployment, consid-

ering performance, efficiency, and resource conservation,

provided the hardware allows.

4) Fig. 9 visualizes a challenging AOD task characterized by

long distances and an obstacle. It indicates that RL-based

methods fail the task either due to the robot colliding

with obstacles or losing the target object from view after

executing the final action. The task execution process of

the BC-based method appears successful but actually fails

because the agent prematurely terminates the AOD task,

resulting in a suboptimal final observation view of the

target object. Our method guides the robot to gradually

approach the target object, avoid obstacles, and keep the

object in view, ultimately successfully terminating the

task in an optimal observation state.

C. Ablation Study

We conduct the experiments of ablation study about the ex-

pert strategy, the CMG, the n-step about ensuring sub-CMG,

and the threshold uth in (7) and analyze their respective roles

in the AOD task.

1) Expert Strategy: In the AOD task, there are two require-

ments for the expert strategy: the path length is as short as

possible (P-L), and the target object cannot leave the robot’s

field of view (T-O). To explore the necessity of choosing the two

points above as indispensable conditions for the expert strategy,

three different expert strategies are selected for comparison as

follows.

a) Heuristic strategy: Based on the reward function out-

lined in [9], a method to determine the optimal action

for each state is employed as a heuristic action selection

strategy. This strategy satisfies T-O but not P-L.
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Fig. 10. Test results at different step distance n.

TABLE VII
TEST RESULTS USING DIFFERENT

uth VALUES

uth SR APL ADT

0.25 0.751 14.561 0.152

0.5 0.888 12.182 0.133

0.75 0.869 16.357 0.343

1.0 0.857 17.674 0.558

Note: The bold entries indicate the
best result for each metric.

Fig. 11. (a) Experimental setup in a real environment and an example
of three different levels of AOD tasks. (b) Different types of target objects.
(c) Intel RealSense D435 depth camera.

b) NetworkX +A∗: Using the A∗ algorithm in the STN

allows for the direct determination of the expert path,

which satisfies P-L but not T-O.

c) Ours: The expert strategy proposed in this article, which

can satisfy the above two requirements.

We conduct model training using expert data generated by

the three methods above, the outcomes of which are presented

Fig. 12. (a) Two-dimensional layout of the real environment. (b) Partial
RGB images and distribution of target objects in the real-world scene
dataset.

TABLE VIII
TEST RESULTS IN THE REAL ENVIRONMENT

Method Group SR APL ADT

MCrgb

Simple 1.0 6.758 0.306
Complex 1.0 8.054 0.529
Average 1.0 7.406 0.418

Ours
Simple 1.0 5.353 0.206

Complex 1.0 6.146 0.189

Average 1.0 5.750 0.198

Note: The bold entries indicate the best result for
each metric.

Fig. 13. Visualization of three different AOD Tasks, showing only initial
and end states before and after task execution.

in Table V. Clearly, our expert strategy demonstrates better

performance, achieving an accuracy of 88.8% and maintaining

an APL of only 12.182. Therefore, it is verified that when de-

signing expert policies, P-L and T-O are crucial considerations.

Neglecting the former affects task execution efficiency (APL:

18.818), while poor design of the latter significantly reduces

task completion accuracy (SR: 34.9).

2) CMG: In this article, CMG serves two primary functions:

a) state input: the extracted spatial structure feature from CMG

can be used as part of the input of the GAIL-AOD model; and

b) action decision: utilize the memory information to assist the

robot in quick action decision-making.

To investigate how the presence of CMG aids robots in solv-

ing the AOD task, the ablation experiments are divided into

four groups, and the findings are presented in Table VI. The

results indicate that using the local spatial features represented

by the CMG as state input significantly enhances the SR. In

the first two sets and the latter two sets of experiments, the

accuracy increase by 24.4% and 18.0% when state input is
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Fig. 14. Demo of AOD task. (a) Action type between two transition steps. (b) Impact of whether to use the CMG on the action decision-making. The
robot’s moving path is demonstrated in (c). (d) Laptop in the first view. The simulated movement trajectory of the robot in the real scene is shown
in (e), and the red arrow represents the rotation action. Meanwhile, the updating process of CMG is presented in (f). The yellow nodes represent
actions corresponding to the node’s state predicted by the GAIL-AOD model, while green nodes signify actions obtained directly from the CMG.

present compared to when it is absent. When considering the

action decision, a comparison of the results between the first

and third groups, as well as the second and fourth groups, re-

veals a decrease in APL values by 9.198 and 4.794, respectively.

Additionally, the single-step decision-making time is reduced

by 0.397 and 0.495 s. It is evident that despite the simplicity of

the CMG structure, its application significantly enhances the

efficiency of the AOD tasks.

3) n-Step in Sub-CMG: To select the sub-CMG that best

represents the local spatial structure around a certain point from

the CMG, we tested different values of n in KE and UE, with

the results shown in Fig. 10. From the results, it can be observed

that the performance is suboptimal when n is less than 3, mainly

because the sub-CMG fails to sufficiently represent the local

structure, limiting the information obtained by the robot. Con-

versely, when n is greater than 3, performance declines because

the sub-CMG structure becomes overly complex, leading to

redundant representations of the spatial structure, from which

the robot cannot effectively extract useful information. There-

fore, considering both the SR and APL metrics, the optimal

performance for the robot in executing AOD tasks is achieved

when n is set to 3.

4) Threshold uth: Table VII indicates that when uth = 0.5,

the CMG’s decision-support function is most effectively uti-

lized, helping the robot to complete AOD tasks with higher

accuracy and efficiency. When uth < 0.5, the condition is too

lenient, leading to incorrect usage of historical information due

to untimely updates of memory information, which degrades

task performance. Conversely, when uth > 0.5, the condition

is too stringent, preventing the CMG from fully supporting

decision-making. As a result, action decisions overly rely on

the GAIL-AOD model, significantly reducing task efficiency.

Therefore, uth = 0.5 is the relatively optimal value.

D. Experiments in Real-World Scene

A real home scene [see Fig. 11(a)] is built to validate the pro-

posed method, and the robot can engage in three varying levels

of difficulty for AOD tasks: easy, moderate, and hard, as shown

by the yellow, green, and blue paths, respectively. In this scene,

there are six different target objects [see Fig. 11(b)]. The real-

world scene is discretized, and the Intel RealSense D435 depth

camera [see Fig. 11(c)] is used to collect images. Fig. 12(a)

illustrates the 2-D layout of the constructed scene encompassing

35 discrete points. At each point, an RGB image is captured

by rotating 45◦. Ultimately, 280 images are collected, each

potentially containing multiple target objects [see Fig. 12(b)].

For target object, we use the pretrained Yolo-v3 [27].

1) Quantitative Analysis: To emphasize the performance

of the proposed method, an additional method is introduced:

MCrgb: manually selecting the action based on the size and

position of the target object in the RGB image; and Ours:

the proposed GAIL-AOD method with the CMG. During the

test, target objects are divided into two groups according to

two attributes (size and dynamics): simple group: refrigerator,

television, and microwave oven; and complex group: laptop,

coca-cola, and paper cup. The experimental result is shown in

Table VIII. In Fig. 13, the execution process of three different

difficult AOD tasks mentioned in Fig. 11 is simply visualized.

According to these, Ours reaches the same level as MCrgb in

terms of accuracy, and the APL and ADT values are lower,

indicating that our method can complete the AOD task and
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achieve humanlike performance in the real environment. Fig. 13

shows that given an initial state containing a target object, the

robot can leverage our method to predict the correct sequence

of actions and terminate the task in the suitable state.

2) Qualitative Analysis: To qualitatively analyze the robot’s

execution performance, we select an AOD task targeting a

laptop as a demonstration example, as illustrated in Fig. 14. Ini-

tially, the laptop is at the edge of the RGB image [Fig. 14(d)©0 ],

so the robot performs the left and rotate_ccw actions to

keep the laptop in the view, reaching state ②. Subsequently, to

minimize the distance, the robot consecutively performs three

forward at states: ②, ③, and ④. At state ⑤, the laptop is about

to move out of view, then the robot executes rotate_cw to

reposition it back to the center of view, which demonstrates

the robustness of the proposed method. Then, the robot con-

tinuously performs three forward actions and a left action to

approach the laptop and attains the best observation viewpoint

steadily. Finally, at state ⑩, the robot proactively terminates this

AOD task. Furthermore, when using CMG, the robot completes

the AOD task in only 8.67 s, which is 5.18 s faster than without

CMG (13.85 s) [see Fig. 14(b)]. This acceleration is due to spe-

cific actions (②, ④, ⑤, ⑥, ⑧, ⑩) directly obtained from CMG,

significantly reducing task execution time. When using CMG,

all action predictions are accurate, whereas without CMG, there

are four incorrect action predictions (①, ③, ④, ⑩). Thus, using

CMG improves time efficiency and enhances task completion

accuracy.

V. CONCLUSION

In summary, this article introduces a novel AOD framework

for the service robot based on GAIL and considers the long-term

nature of AOD tasks. We used the NetworkX and A∗ algorithm

to automatically generate expert data. Considering task accu-

racy and efficiency, an expert trajectory optimization strategy

is proposed. To enhance the robot’s perception of spatial in-

formation, we develop a simple yet efficient CMG to represent

spatial structure and extract the local spatial feature. Moreover,

the CMG is endowed with a human-like memory mechanism,

enabling it to participate directly in the action decision process.

Experimental results in AVDB demonstrate that the GAIL-AOD

model achieves higher accuracy and efficiency. The introduc-

tion of the CMG not only further improves task accuracy but

also significantly reduces the ADT and decreases computational

resource consumption. This is particularly beneficial for long-

term AOD tasks, effectively reducing the consumption of power

resource. Furthermore, we also establish a real-world home

scene to verify the proposed method. In the future, we will

attempt to apply our method to more challenging object naviga-

tion or search tasks and establish a larger outdoor test scenario.
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