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Gap junctional intercellular communication (GJIC) is a critical part of
cellular activities and is necessary for electrical propagation among
contacting cells. Disorders of gap junctions are a major cause for
cardiac arrhythmias. Dye transfer through microinjection is a conven-
tional technique for measuring GJIC. To overcome the limitations of
manual microinjection and perform high-throughput GJIC measure-
ment, here we present a new robotic microinjection system that is
capable of injecting a large number of cells at a high speed. The highly
automated system enables large-scale cell injection (thousands of cells
vs. a few cells) without major operator training. GJIC of three cell
lines of differing gap junction density, i.e., HeLa, HEK293, and HL-1,
was evaluated. The effect of a GJIC inhibitor (18-�-glycyrrhetinic
acid) was also quantified in the three cell lines. System operation
speed, success rate, and cell viability rate were quantitatively evalu-
ated based on robotic microinjection of over 4,000 cells. Injection
speed was 22.7 cells per min, with 95% success for cell injection and
�90% survival. Dye transfer cell counts and dye transfer distance
correlated with the expected connexin expression of each cell type,
and inhibition of dye transfer correlated with the concentration of
GJIC inhibitor. Additionally, real-time monitoring of dye transfer
enables the calculation of coefficients of molecular diffusion through
gap junctions. This robotic microinjection dye transfer technique
permits rapid assessment of gap junction function in confluent cell
cultures.

robotic microinjection; automation; gap junctional intercellular com-
munication; dye transfer

GAP JUNCTIONAL intercellular communication (GJIC) exists in
many mammalian tissues. The gap junction is a specialized
intercellular channel formed by the juxtaposition of two half
channels called connexons (14, 16). Gap junctions are critical
to several physiological roles, including impulse propagation
in cardiac and neuronal tissue (4), regulation of embryonic
development (19), and regulation of cellular proliferation (22).
The abnormal GJIC is one major mechanism for cardiac
arrhythmias (12, 33), which are a leading cause of cardiac
morbidity and sudden death (5). The exchange of molecules
through gap junctions includes the passive diffusion of small
(�1 kDa) and hydrophilic molecules, such as metabolites,
nutrients, and second messengers (e.g., trisphosphate inositol
and calcium) (2).

GJIC is regulated by the number of channels in the mem-
brane, the functional state of gap junctions, and their permea-
bility (15). The measurement of GJIC has been studied for
decades by using a number of methods, such as dye transfer

through microinjection (10), the scrape/scratch method (9),
electroporation (29), fluorescence redistribution after photo-
bleaching (36), and conductance measurement by dual-patch
clamp (24, 26). Among these techniques, microinjection of
membrane-impermeable, nontoxic tracers into single cells has
been the most commonly used technique for identifying and
mapping GJIC for a wide variety of cells (1). The microinjec-
tion method is considered superior to other techniques because
of the following reasons: 1) microinjection permits the corre-
lation of morphological and functional data from individual
cells; 2) the technique enables kinetic studies aimed at evalu-
ating the transfer rate from one cell to another; and 3) in
microinjection, the level of cell communication is expressed as
number of dye-coupled cells, permitting the direct comparison
of GJIC in different cell types (18).

However, microinjection has stringent skill requirements,
low cell viability rate, and poor reproducibility (7). Manual
microinjection is typically used for injecting a few or tens of
cells per experiment, limiting its usefulness when a large
number of cells need to be tested for GJIC assessment. Here we
report a robotic microinjection system and technique, for the
first time, to enable the injection of hundreds of cells per
experiment rapidly and accurately. The automated system is
operated via computer mouse clicking for indicating target
cells for microinjection. Training a user who has no skills in
microinjection takes �15 min, and after a few hours of oper-
ation, the user can readily become proficient at operating the
system to perform microinjection with high success rates. In
this report, system operation speed, microinjection success
rate, and postinjection cell survival rate were quantitatively
described, based on the injection of over 4,000 cells. With the
high-throughput capability and high reproducibility of the
system, GJIC of HeLa cells, HEK293 cells, and HL-1 cells was
quantitatively measured, as these cell lines are known to have
absent, moderate, or high expression of gap junctions, respec-
tively. Finally, the effect of a GJIC inhibitor was tested in the
three cell lines.

METHODS

Instruments. As shown in Fig. 1, A and B, the robotic injection
system is built on a standard inverted microscope (Nikon Ti) with
motorized magnification and motorized focusing control. An X-Y
motorized stage (ProScan, Prior), which has a travel range of 75 mm
and a resolution of 0.01 �m along both axes, is mounted on the
microscope. A four degree-of-freedom micromanipulator controls the
motion of the injection micropipette with a positioning resolution of
0.1 �m along each axis. An injection micropipette pulled from a glass
capillary is used to deliver fluorescent dyes into cells. The micropi-
pette is connected to a digitally controlled pump (XenoWorks Digital
Microinjector, Sutter Instrument). A camera is connected to the
microscope to provide microscopy imaging and visual feedback. A
host computer runs our custom-built control software to control all the
aforementioned instruments.
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Autolocating micropipette tip. In manual microinjection, the oper-
ator needs to first locate the micropipette tip by operating the micro-
manipulator and microscope. Locating a micropipette tip that has a
submicrometer diameter can be a challenge because the fragile tip is
easy to break when colliding with other devices (e.g., petri dish). To
help less-experienced microinjection operators avoid micropipette
breakage, micropipette tip is located automatically in this robotic
microinjection system. After the operator places the micropipette tip
approximately within a 4 mm-cube workspace, the robotic system
automatically locates the micropipette tip under lower magnification
(e.g., �4). Once the micropipette tip is detected under low magnifi-
cation, the microscope is switched to higher magnifications, and the
locating process is repeated.

The process of locating micropipette tip consists of two steps:
detection of micropipette tip and autofocusing adjustment. In the
detection step, the micropipette is moved in a zigzag pattern in the X-Y
plane. In the meanwhile, the system detects the micropipette tip’s
presence in the field of view (FOV) via computer vision. When the
micropipette tip is present in the FOV, it is often partially or entirely
out of focus. In the autofocusing step, therefore, the coarse and fine
focus adjustments are performed to focus on the micropipette tip.
Coarse adjustment moves the focal plane in a large step size until the
focus measure (34) of the entire image reaches the maximum value.
The fine focus adjustment divides the entire image into small regions
(10 � 10 pixel) and finds the most in-focus region by calculating
focus measure for each region. If the most in-focus region contains the
micropipette body instead of the micropipette tip (i.e., partially in
focus), the focal plane is moved downward until the micropipette tip is
brought in focus. After the micropipette tip is focused, it is moved to the

center of the FOV and close to the cell surface. Details on the detection
and autofocusing of micropipette tips are described in Liu et al. (21).

Contact detection. After the micropipette tip is autolocated, the
vertical distance between the micropipette tip and the cells must be
determined. In the robotic system, two modes of contact detection are
integrated to accurately determine the relative distance between mi-
cropipette tip and the cells along the Z direction. One contact detection
algorithm is to detect the micropipette tip’s contact on the culture dish
substrate when the cell confluency is low (i.e., there are empty areas
on dish surface). The other algorithm is to detect the micropipette tip’s
contact on cell surface when cell confluency is high (e.g., fully
confluent).

In contact detection on dish substrate (Fig. 2A), the system lowers
the micropipette along the Z direction when the system moves the X-Y
stage simultaneously. When the micropipette tip contacts the dish
substrate, further vertical movement induces horizontal sliding on the
dish substrate. Once the system detects the horizontal motion, the
height of the micropipette tip is recorded in the system as the dish
substrate’s Z position. In the subsequent microinjection step, the
system inserts the micropipette tip into the cells at a vertical depth that
is 2 �m above the dish substrate. Details of contact detection on dish
substrate are described in (38).

For detecting contact with the cell surface (Fig. 2B), the micropi-
pette tip is first moved to the cell’s position in the X-Y plane. The
micropipette is then moved downward to approach the cell surface
along the Z-axis. When the end-effector tip contacts the cell surface,
the cell is deformed and a subtle motion appears around the contact
point, which is used to determine the cell’s top surface position. In the
subsequent microinjection step, the system inserts the micropipette tip
into the cells at a vertical depth that is 2 �m below the cell’s top
surface.

Robotic injection. In the software interface, the operator can select
a single cell or multiple cells to inject by mouse clicking on the cells
within the FOV. The system extracts cell templates centered at the
mouse clicking positions. The templates are used for template match-
ing to provide position feedback. After contact detection is performed,
the system moves the micropipette tip close to the first target cell and
inserts the micropipette into the cell along the tilting axis at the
maximal speed (Fig. 2C). The pressure pump is then triggered to
apply a positive pressure to deposit the preloaded material into the
cell. Material deposition results in a “shock wave” motion inside the
cell around the injection location (Fig. 2D). The volume of injected
materials is precisely controlled by setting the injection pressure
magnitude and width. Although target cells can be selected in a
random order by the operator, the system injects selected cells along
the shortest path. The system also records the locations of all injected
cells, permitting time-lapsed imaging of cell response.

Injection volume control. Injection volume is determined by the
injection pressure and pressure “on” time (i.e., pulse width). Injection
volume was experimentally measured. The micropipette preloaded
with distilled water was immersed into mineral oil. After 50 times of
injection with a pressure “on” time of 0.4 s, a water bubble was formed
at the tip of the micropipette. The injection volume was then calculated
based on the size of the water bubble. Figure 2E shows the calibrated
relationship between injection pressure and injection volume.

To keep a high postinjection survival rate, the volume of injected
foreign materials must not exceed 5% of the cell’s cytoplasmic
volume (37), and therefore not exceed 30 fl for most adherent cells.
Accordingly, the injection pressure was set lower than 3,000 hPa in
our system. In addition to injection pressure, the pump also provides
a constant positive pressure (50 hPa) throughout the entire microin-
jection process. The application of this positive pressure ensures that
there is a constant, gentle flow of solution from the micropipette,
preventing undesired dilution of the solution in the micropipette by
the medium inside the Petri dish. Moreover, the positive pressure also
reduces the possibility of micropipette tip clogging by foreign objects
in the surrounding medium.

Fig. 1. A: automated robotic microinjection system. 4-DOF, four degrees of
freedom. B: schematic demonstration of the robotic microinjection system.
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Dye transfer experiments. In the dye transfer experiments, the
membrane-impermeable 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) dye
(Life Technologies, Burlington, CA), mixed with dextran-rhoda-
mine dye (Life Technologies, Burlington, CA), was injected into a
selected cell by using the robotic microinjection system. Both
fluorescent dyes were at a concentration of 2 mM and mixed at a
ratio of 50%. HPTS was chosen because of its small molecular size
(molecular mass � 524.37 Da) and the membrane-impermeable
property. HPTS is also highly water-soluble; therefore, it does not
cause micropipette clogging.

After microinjection, HPTS molecules can be transferred from the
injected cell to adjacent cells through gap junctions. In contrast,
dextran-rhodamine molecules, because of their large size (molecular
mass �10,000 Da), cannot pass through gap junctions. Therefore,
only the injected cells reveal red fluorescent color, whereas the
injected cells as well as a number of adjacent cells reveal green
fluorescent color (Fig. 3, A–D). GJIC was quantified by measuring the
dye transferred cell number and dye transferred distance. The dye
transferred cell number is the number of cells taking up the fluorescent
molecule from the injected cell through gap junction. The dye transfer
distance is the furthest distance that the fluorescent dye can be
transferred.

GJIC was investigated for three cell lines (HeLa cells, Hek293
cells, and HL-1 cells). These cell lines have markedly different
expression of connexin genes (Cx37, Cx40, Cx43, and Cx45) during
their normal growth and differentiation. HL-1 atrial cardiomyocytes
were maintained in Claycomb medium supplemented with 10% FCS,
100 �g/ml penicillin-streptomycin, 10 �M epinephrine, 2 mM and
L-glutamine as previously described (6). HEK293 and Hela cells were

cultured in DMEM supplemented with 10% fetal bovine serum at
37°C in 5% CO2-95% air humidified atmosphere. All three cell lines
were seeded on 35-mm petri dishes until reaching a high confluency
(�90%).

We also used 18-�-glycyrrhetinic acid (18-�GA; Sigma-Aldrich)
to alter GJIC in the three cell lines. This molecule is a pentacyclic
triterpenoid derivative of the beta-amyrin type obtained from the
hydrolysis of glycyrrhizic acid (11). It was used for blocking the roles
of GJIC in fibroblast growth (23), myoblast fusion (25), and human
trophoblast proliferation (27). In our experiments, the GJIC of three
experimental groups with different doses (25, 50, or 100 �M) of
18-�GA treatment was measured. Two control groups were also
included. Control group 1 (control 1 in Fig. 4A) had no 18-�GA.
Since the 18-�GA stocking solution was dissolved in DMSO, a
second control group (control 2) with only DMSO treatment was also
examined.

Dye transfer measurement. After robotic microinjection, cells were
washed with PBS solution (Life Technologies, Burlington, CA) and
incubated for 5 min. The cells were then placed back to the X-Y stage
on the system and automatically imaged under fluorescence imaging.
Captured images were converted into grayscale and then binarized
using an adaptive threshold algorithm. A minimum enclosing circle
algorithm was then applied to bound the bright objects. The diameter
of the bounding circle (see circle in Fig. 2F) was measured as the dye
transfer distance.

The system also allows users to monitor fluorescent dye diffusion
in real time. According to Safranyos et al. (31), diffusion kinetics is
described by C(r,t) � (s/4	Deh)E1(r2/4Det), where C(r,t) is the
concentration of fluorescent dye at a distance r from the injection

Fig. 2. A: schematic showing principle of
contact detection on dish substrate. B: sche-
matic showing principle of contact detection
on cell surface. C: micropipette tip is in-
serted into an HL-1 cell. D: materials are
deposited into the same HL-1 cell. Scale
bar � 20 �m. E: injection volume control.
F: dye transfer distance measurement.
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location at time t from the start of injection, s is the dye injection rate,
h is the thickness of the monolayer cells, E1 denotes the exponential
integral, and De is the diffusion coefficient. Experimentally measured
fluorescence intensity, which is proportional to its concentration, was
fitted to this equation by using a nonlinear regression model. In this
nonlinear regression model (32), the diffusion coefficient De is deter-
mined by dye transfer distance, time, and fluorescence intensity,
independent of injection rate and cell thickness.

RESULTS AND DISCUSSION

Injection speed. Injection speed of the robotic system was
evaluated by injecting the three cell lines. The number of
injected cells and time consumed are summarized in Table 1.
The injection time in Table 1 is the total experimental time for
all steps including locating micropipette tip, contact detection,
cell selection, and injection. The results from the injection of
over 4,000 cells show that the injection speed of the robotic
system is consistent across different cell lines. The average
injection speed of 22.7 cells/min enables users to inject over a
thousand cells within 1 h for assessing GJIC.

Injection success rate and cell survival rate. HPTS fluores-
cent dye was injected into the cytoplasm of HeLa cells for
testing the success rate of robotic microinjection. After micro-
injection, the cells were examined under fluorescent micro-
scope. Those cells revealing strong green fluorescent signals
were counted and considered as successfully injected. Exper-
imental results from injecting 1,245 cells show that the success
rate was 95.2%, which is significantly higher than previously
reported injection success rates, 49.2% by Lim et al. (20), and
49% by Viigipuu and Kallio (35). This success rate improve-
ment is mainly attributed to the system’s capability of precisely

detecting Z positions of cells and micropipette tip and its capabil-
ity of compensating for accumulative positioning errors.

Cell postinjection viability was evaluated for the three cell
lines by using a cell viability assay kit (Viability/Cytotoxicity
Kit, Life Technologies) after the injected cells were incubated
for 2 h. The measured cell survival rates for HeLa, HEK293,
and HL-1 cells after microinjection were 97.2 
 0.3, 94.5 

0.2, and 93.7 
 0.4%, respectively (n �100 for each group;
triplicate for each experiment). The results demonstrate that
cells are able to maintain their viability at a high level (�90%)
for all the three adherent cell lines. Because of the embedded
automated techniques in the robotic injection system, the
injection success rate and cell survival rate are significantly
increased, compared with other commercial joystick-based
microinjection system (20, 35). Since the deposited materials
in this study were fluorescence molecules (vs. DNA con-

Fig. 3. A–D: iime-lapsed images showing fluorescent dye is transferred from
the injected HL-1 cell to adjacent cells at 50s, 100s, 150s, and 300s, respec-
tively. E and F: HeLa cells do not show dye transfer through gap junctions.
Scale bar � 20 �m.
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Fig. 4. Results of dye transfer experiments using the robotic microinjection
system. A: number of dye transferred cells (n � 200 for each data point).
B: histogram of dye transfer distance for HL-1 cells.

Table 1. Robotic microinjection speed of three different cell
lines

HeLa Cells HEK293 Cells HL-1 Cells Overall

Injected cell number 2,281 1,068 1,116 4,465
Injection time, min 97 48 52 197
Speed, cells/min 23.5 22.3 21.5 22.7
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structs), the host cell’s gene expression profiles should not
have been changed. However, the effect of micropipette pen-
etration and pressure application for material deposition on
gene expression profiles still needs further study.

When beating HL-1 cells were injected, the beating cardiac
muscle cells resumed their beating motion �1 to 2 s after
microinjection. This �1 to 2 s interruption may have involved
the reseal of cell membrane and the recovery from microinjec-
tion. For injecting the beating cardiac muscle cells, the contact
detection on cell surface cannot be performed directly on the
beating cell, because the beating motion will interfere with cell
deformation-caused motion. In our experiments, we found that
not all HL-1 cells beat, similar to the findings of others (13,
40). Therefore, the contact detection on cell surface was
performed on a neighboring nonbeating cell that has a similar
height with the target beating cells. In the experiments, both
beating and nonbeating HL-1 cells are injected for GJIC
measurement because they both express cardiac gap junction
proteins (28).

Characterization of GJIC. The results from dye transfer
experiments for testing the GJIC of three cell lines show that
HL-1 cells (a cardiac muscle cell line) have much higher GJIC
than the other two cell lines, as shown in Fig. 4A. GJIC plays
a particularly important role in impulse propagation in cardiac
tissue (30). When the impulse signal is passed efficiently
through gap junctions, the cardiac tissue contracts and relaxes
at the same tandem. In contrast, Hela cell, a cancer cell line
derived from cervical cancer cells, is known to be intrinsically
deficient in major gap junctions. This may be a factor in tumor
formation, potentially inhibiting the intercellular GJIC within
the cells (17). Human embryonic kidney (HEK) cells are
known to express an intermediate amount of gap junctions.

The experimental data also shows that there is no significant
difference between the two control groups. The number of
adjacent cells taking up fluorescent dye from the injected cells
significantly decreased with a higher dose of GJIC inhibitor.
The results show that 100 �M of 18-�GA effectively blocked
almost all the gap junctions for both cell lines which express
them. This suggests that the glycyrrhetinic acid derivatives
potentially disturb GJIC by blocking gap junctions. The dye
transfer distance was also measured for the HL-1 cells. With
the robotic injection system, a number of cells (over 200 cells
for each group) were injected for investigating the GJIC of
HL-1 cells. The histogram in Fig. 4B clearly shows that a
higher dose of 18-�GA inhibitor resulted in significantly
shorter dye transfer distances. To quantitatively measure the
GJIC function, fluorescent dye diffusion coefficient was cal-
culated. The diffusion coefficients of control group and 50-�M
treatment group were 3.62�10�7 and 1.28�10�7 cm2/s, re-
spectively. These diffusion coefficients are within the same
order of magnitude as previously reported values for fluores-
cent dyes with similar molecular mass (3, 31, 39). The diffu-
sion coefficient differences also indicate that molecule diffu-
sion through gap junctions was suppressed by 18-�GA treat-
ment. The GJIC alteration may influence both chemical and
electrical coupling (8). In addition to the measurement of
chemical coupling by dye transfer, electrical coupling can be
quantitatively measured by whole cell dual-voltage clamp.

Manual microinjection of adherent cells and existing robotic
system prototypes are limited to the injection of a few to tens
of cells per experiment at best. Our new robotic system

described in this article is the first system capable of perform-
ing microinjection on hundreds and thousands of cells per
experiment. The system is embedded with strong automation
capabilities in every step of operation, enabling an operator to
perform the entire microinjection process via computer mouse
clicking in front of a computer monitor.

Conclusion. This article reported a robotic microinjection
system with a high degree of automation. It enables users with
no microinjection training to perform large-scale cell microin-
jection with high success rates. System operation speed, suc-
cess rate, and cell viability rate were quantitatively evaluated.
We demonstrate that the robotic microinjection system is
capable of performing dye transfer experiments for character-
izing the GJIC of different types of cells, using large sample
sizes with a high reproducibility. The high-throughput system
can also be useful for testing the efficacy of drugs that alter the
GJIC of cells. The robotic injection system can also be possibly
adapted for other applications, such as electrophysiological
patch clamping.
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