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Abstract— An unbiased assessment of sperm morphology and
motility is crucial for assessing fertility potential and guiding
visual feedback for microrobotic manipulation. Automated anal-
ysis and selection of optimal sperm are essential for in vitro
fertilization treatments, such as robotic intracytoplasmic sperm
injection. However, conventional image processing methods face
limitations in analyzing small sperm objects under microscopic
imaging. While convolutional neural networks (CNNs) have
brought promising advancements in microscopic image analysis,
previous CNN methods have struggled to accurately differentiate
tiny objects. These methods often require staining or fluorescence
techniques to enhance visual contrast between sperm and culture
medium, leading to clinical impracticality. To address these
limitations, we introduce a novel sperm recognition network
named the sperm feature-correlated network (SFCNet), for
accurate and efficient segmentation and tracking of minute sperm
objects. The SFCNet employs innovative modules, including
collateral multi-scale convolution, cross-scale feature map guide,
atrous spatial pyramid convolution with pooling, lateral attention,
and multi-scale tracking proposal, to preserve essential sperm
details despite their small size. Experimental results indicate that
the SFCNet surpassed the state-of-the-art models designed for
segmenting or tracking small objects, achieving up to a 28.39%
higher Sørensen-Dice coefficient in segmentation and a 10.33%
higher average precision in tracking. Additionally, the SFCNet
excelled in sperm morphometric analysis, achieving errors below
15%. Moreover, the SFCNet also secured top-tier performance
in sperm motility analysis, acquiring errors below 13% in seven
sperm motility parameters.

Note to Practitioners—This study is stimulated by the need
to analyze the quality of motile sperms and select the optimal
one for in vitro fertilization. Existing methods for detecting
sperm fall short as they require a relatively high-magnification
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microscopic image or the usage of stain or fluorescence to
increase sperm visualization, which limits the selection process
or even makes the sperm clinically unavailable. To overcome
these limitations, the present work proposes a new framework
based on deep learning, which includes the design of extracting
multi-scale sperm features. Experimental results suggest that the
proposed method can perform better than existing methods in
real-time analysis of multiple motile sperms’ morphology and
motility at 20× objective. In the future, there is a high potential
for fertility specialists and healthcare workers to apply the
presented framework in fertility treatment with higher accuracy
and efficiency.

Index Terms— Automation at micro/nano scale, sperm analysis,
in vitro fertilization, deep learning, attention mechanisms.

I. INTRODUCTION

INFERTILITY is a global health issue affecting millions of
couples worldwide. Male factors alone account for 30% of

infertility cases [1]. The morphology and motility of sperm
are pivotal characteristics in determining its fertility potential
and selecting healthy sperm for in vitro fertilization (IVF) in
clinics.

Accurate measurement of sperm morphology and motil-
ity plays an essential role in evaluating sperm quality for
addressing male infertility. The World Health Organization
(WHO) has recommended key morphometric and motility
parameters for assessing human sperm, encompassing head
area, head length, head width, head ellipticity, head angle,
tail length, VSL, VCL, VAP, ALH, MAD, LIN, WOB, and
STR [2], as summarised in Fig. 1ab. Traditionally, subcellular
analysis of sperm morphology and motility parameters has
been conducted using high-magnification microscopy (100×

objective) [3]. However, utilizing high magnification restricts
the analysis to one sperm at a time due to the small field of
view. To obtain an unbiased assessment of sperm morphology
and motility across a semen sample and select the viable sperm
from the population, it is necessary to evaluate multiple sperms
under lower magnification microscopy (e.g., 20× objective).
However, a significant challenge arises as the area occupied
by a single sperm is less than 1% of a petri dish under a
20× objective. Manual inspection and selection of small sperm
cells are labor-intensive and necessitate extensive training for
a physician to become proficient.

Recent advancements have focused on achieving precise
localization of the sperm head center using the Kalman filter
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Fig. 1. Quantified parameters representing sperm (a) morphology and
(b) motility. (c) Calculation of sperm motility parameters. (d) Exemplary
semen image captured at 20× objective magnification. Automated (e) mor-
phology and (f) motility analysis using computer vision algorithms.

for quantitative analysis of locomotive behaviour [4]. Addi-
tionally, Chang et al. [5] employed a k-means algorithm to
detect color variations in culture dishes for identifying sperm
heads. The watershed algorithm has also proven valuable
in segmenting sperm from the surrounding medium from
microscopic images [6]. Besides, Zhang et al. [7] applied a
segmentation algorithm based on pixel intensity using a dif-
ferential interference contrast (DIC) imaging mode to identify
the sperm head, mid-piece, and tail. Despite their utility,
these methods are ineffective in measuring a full spectrum
of parameters for the assessment of sperm morphological
structures and motility physics.

In addition to pixel-based image processing, deep learn-
ing algorithms were developed to recognize medical objects,
including bacterial cells [8], blood cells [9], blastocysts [10],
[11], polyps [12], [13], skin lesions [14], and so forth. Various
deep learning methodologies, such as MobileNet [15] and
UNet [16], have been utilized to analyze sperm characteris-
tics. However, a common limitation of these methodologies
lies in the necessity for fluorescent tags or staining dyes to
enhance sperm visualization. Unfortunately, using foreign flu-
orochromes or dyes inevitably damages the cell health, making
the sperm clinically impractical for IVF treatment. While Dai
et al. successfully employed the UNet algorithm to accurately
track individual sperm tails for robotic immobilization [17],
and Liu et al. used the UNet-tiny model for non-invasive char-
acterization of sperm head parameters [18], these approaches
were limited to analyzing either individual sperm head [17] or
tail [18] per instance. The non-invasive simultaneous measure-
ment of both morphology and motility parameters for motile
spermatozoa has remained largely unexplored.

In the field of computer vision, encoder-decoder architec-
tures with a “U-shape” structure, such as UNet [19] and
UNet++ [20]), have shown their potential in segmenting
general objects. However, they often overlook the category

of small objects. To tackle the challenge of reduced image
resolution and information loss due to downsampling, feature
correlation [21], [22], [23] and atrous convolution [24], [25]
have been introduced. The spatial object contextual repre-
sentation network (OCRNet) [21] leveraged the interaction
among different-scale objects within an image. Additionally,
deep labeling version three plus (DeepLabV3+) [24] and
lite-reduced atrous spatial pyramid pooling (LRASPP) [25]
expanded the receptive field by incorporating voids and cap-
tured broader context information through multi-scale context
aggregation in atrous convolution, thereby eliminating the
need for downsampling. The pyramid scene parsing network
(PSPNet) [22] employed a multi-scale network to enhance the
learning of global context representation, regardless of object
sizes. Furthermore, the high-resolution network (HRNet) [23]
kept high-resolution features in every layer of its architec-
ture by using cross-resolution convolutions and information
exchange.

For object tracking, recent advances have presented that
multi-scale tracking yields promising results [26], [27], [28],
[29], [30], particularly for small objects. The retina net-
work (RetinaNet) [26] and fully-convolutional one-stage object
detector (FOCS) [27] used pyramidal convolutions to pro-
duce the rich multi-scale features. Cascade region-based
convolution neural network (Cascade RCNN) [28] applied
a multi-stage strategy for reusing larger-shape tensors to
maintain equivalence of detector quality and treat the same
importance of objects regardless of their size. In addition,
the trident network (TridentNet) [29] incorporated a parallel
multi-branch system and sampled object instances based on
their size. However, it remains unclear how effective these
methods are in distinguishing spermatozoa.

This study proposes a novel deep learning architecture
named the sperm feature-correlated network (SFCNet) to
differentiate and characterize multiple sperms at a 20× objec-
tive magnification. SFCNet incorporates six core techniques:
collateral multi-scale convolution, cross-scale feature map
guide, atrous spatial pyramid convolution with pooling, lateral
muti-scale attention, multi-scale region proposal, and joint
probabilistic data association. Importantly, this methodology
enabled morphology analysis (Fig. 1e) and motility analysis
(Fig. 1f) without the need for fluorescence or dye staining to
enhance sperm visibility. Experimental results demonstrate the
superior performance of the SFCNet network, achieving a Dice
score of 64.14% for segmenting sperm and errors of less than
<15% across all measured morphology parameters. SFCNet
also outperformed other tested methods with 92.10% AP50 and
errors of less than <13% in measuring motility parameters on
sperm tracking at a speed of 318 frames per second.

II. SYSTEM SETUP AND DATA ACQUISITION

This section presents the configuration of the microrobotic
system in Sec. II-A and methods for processing and annotating
the data in Sec. II-B.

A. System Setup

The system setup for the sperm analysis and manip-
ulation was built on a standard inverted microscope
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Fig. 2. (a) System setup for specimen collection and automated sperm
analysis. (b) Flow diagram for analysis and selection of the sperm of interest.

(Nikon Eclipse Ti2), as depicted in Fig. 2a. A 20× objective
lens (Nikon S Plan Fluor, NA: 0.45) was used for microscopic
imaging. A CMOS camera (Basler A601f, with a dimension
of 640 × 480) was used for capturing videos at 30 frames per
second for analysis and visual feedback. A motorized 2-DOF
translational stage (ProScan H117, Prior Scientific Inc.) was
equipped to move the sperm on the X-Y plane. Advanced
micromanipulation tasks such as sperm immobilization and
injection were conducted with a 3-DOF micromanipulator
(MP-285, Sutter Instrument Company) with a positioning
resolution of 0.2 µm and a travel range of 25 mm for each
axis. A host computer with an RTX3090 GPU paired with
an Intel Xeon Platinum 8375C CPU was used to process the
captured images and control the micromanipulation system.

B. Data Collection and Annotation

In this study, we collected semen samples from ten volun-
teers at the Prince of Wales Hospital in Hong Kong, preserving
them using SpermCatch, a standard medium. All subjects
provided consent forms in accordance with ethical protocols.
The specimen images were extracted from the captured video
clips at a sampling rate of one image for 15 frames. Subse-
quently, we constructed two distinct datasets, SpermSeg and
SpermTrack, for the separate tasks of sperm segmentation
and tracking. Following the WHO guidelines [2], experienced
fertility doctors meticulously annotated the ground truth of
the sperm entities in the images using the labelme [31].
To streamline the evaluation process, the datasets were divided
into training and testing sets at a partition ratio of 4:1.

The SpermSeg dataset specifically comprises 148 images,
with 118 used for training and 30 for testing. It includes two
semantic classes: normal sperm (normal) and abnormal sperm
(abnormal), annotated at the pixel level. The labeled dataset
encompasses 618 instances of normal sperms, accounting for
42% of the total, and 852 instances of abnormal sperms, also
representing 58% of the total. This amounts to a total of
1470 sperm instances. Given their small sizes, the sperm cells
cover lower than 1% of the entire image area, approximately

0.042% ∼ 0.651%. Consequently, the non-sperm background
occupies roughly 99% of the image.

Additionally, the SpermTrack dataset consists of
291 images, with 232 used for training and 59 for testing,
and includes 3835 sperm objects. These objects are annotated
at the box level. Given the difficulty in categorizing a sperm’s
motility characteristics within a single frame, the sperms in
the SpermTrack dataset are not sorted. Instead, sperm motility
was analyzed by post-processing the sequences of frames
(refer to Sec. III-C3). The SpermTrack dataset includes
more images and sperm instances than the SpermSeg dataset
because annotating instances at the box level is less complex
than at the pixel level.

III. METHODOLOGY

This section describes the key methodologies for automated
sperm analysis with machine learning. The formulation and
details of the sperm feature-correlated network (SFCNet) are
explained in Sec. III-A.

A. Overall Deep Learning Framework

As depicted in Fig. 3, the SFCNet is composed of two
primary elements: sperm segmentation (Sec. III-B) and sperm
tracking (Sec. III-C). The segmentation component consists
of four fundamental parts: collateral multi-scale convolution
(Sec. III-B1), cross-scale feature correlation (Sec. III-B),
atrous spatial pyramid convolution and pooling (Sec. III-B3),
and sperm component measrement with muti-scale feature
fusion (Sec. III-B4). Moreover, the tracking component of
SFCNet includes three essential elements: Lateral attention
with squeeze-excitation mechanism (Sec. III-C1), multi-scale
tracking region proposal (Sec. III-C2), and joint probabilistic
data association for sperm motility analysis (Sec. III-C3).
Additionally, loss functions designed for sperm segmentation
and tracking are discussed in Sec. III-B5 and Sec. III-C4,
separately.

B. Cross-Scale Feature Guide for Segmentation

1) Collateral Multi-Scale Convolution: The network archi-
tecture comprises five horizontal stages. A bottleneck module
(depicted by the pink arrow in Fig. 3) is applied to each stage.
Each bottleneck unit consists of operations, including one
1×1 convolution followed by a 3×3 convolution and 1×1 con-
volution with a skip connection, functioning as a “bottleneck”
in information theory. Assume that Si represents the i th stage,
the dimension of the Si is exactly 1/2i of the dimension of the
original input image. This progressive aggregation of features
spans from lower to higher levels parallelly. Consequently,
the feature maps encapsulate information from the proceeding
stages to generate a comprehensive representation.

Between stages, a Conv3 × 3 is applied to downsize the
feature maps and learn higher-level features (e.g., shape, size,
morphology, orientation, and motion behavior of sperms). All
stages (i.e., S1, S2, S3, S4, and S5) function as the encoder
component of the proposed segmentation model. Notably,
various advanced backbones can be employed in the encoder
part. In this study, the ResNet50 architecture [32] was chosen
as the encoder.
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Fig. 3. (a) Architecture of sperm feature-correlated network. (b) Atrous spatial pyramid convolution with pooling in segmentation (refer to the right light-purple
dashed box). (c) Lateral attention with the squeeze-excitation layer in tracking (refer to the left light-blue dashed box). The aggregation of low-level features
with high-level features through strided convolution and lateral attention for segmenting and tracking sperms is illustrated in the middle light-yellow dashed
box and the left light-grey dashed box, respectively.

2) Cross-Scale Feature Correlation: The intrinsic challenge
for detecting small objects lies in preserving the feature of
diminutive entities such as sperms during a sequence of con-
volutions using a stride of 2 (strided convolution). Hence, it is
imperative to leverage the potential of features characterized
by larger dimensions in the initial stages. This study applies the
cross-scale feature maps to guide subsequent stages in learning
the representation of small objects like sperms.

An illustration of the feature map guidance spanning four
distinct scales (stages) is highlighted in the middle light-yellow
dashed box of Fig. 3. Within this context, given three input
tensors, {Ri , i ∈ {1, 2, 3}}, the output tensor, R j , j ∈ {2, 3, 4},
is calculated through the following equation:

R j = f1, j (R1) + f2, j (R2) + f3, j (R3) (1)

where the transformation fi, j (Ri ) performs ( j−i) 3×3 strided
convolutions in the i th input stage and j th output stage.

Because the final stage, S5, is connected with an additional
segmentation module that computes feature maps differ-
ently from the remaining stages, it is essential to note that
cross-scale guidance is absent in S5 unless explicitly stated.

3) Atrous Spatial Pyramid Convolution With Pooling: The
final stage, S5, is responsible for extracting the highest-level
visual features of sperm entities. To enhance this process,
an integral segmentation module is appended at the end
of S5. Taking inspiration from DeepLabV3 [33], which utilizes
spatial pyramid pooling to capture multi-scale information
from objects, we apply atrous spatial pyramid convolution
with pooling (ASPCP) as the segmentation head in this study
(refer to Fig. 3b). To ensure that the convolution can extract
features across regions of varying sizes, one 1×1 convolution
and three 3 × 3 atrous convolutions (refer to Fig. 4) with
atrous rates 12, 24, and 36 are adopted. It is worth noting
that when the rate is 1, the atrous convolution reverts to
standard convolution. Additionally, the global average pooling
is applied to incorporate global information into the model.
The final five output tensors are then concatenated into a

Fig. 4. Atrous spatial pyramid convolution of ASPCP. Atrous convolution
with atrous rates (a) 1, (b) 12, (c) 24, and (d) 36 are applied to learn
multi-scale features of sperms. Yellow, pink, and blue regions denote feature
maps, convolution kernels, and convolution spaces, respectively.

single tensor and fed into another 1×1 convolution. Since the
regions of sampling information vary for the five operations,
this approach can be viewed as a pyramid feature extraction
strategy.

4) Sperm Components Measurement: The outputs gener-
ated from five stages (Si , i = 1, 2, . . . , 5) exhibit different
feature scales. Therefore, a crucial step involves sampling
these outputs to ensure uniform height and width dimensions.
Since the output originating from S1 has the dimension most
similar to those of the original image, all sub-stream outputs
are reshaped to align with the dimension of the S1 output using
the linear interpolation technique. The fusion of the multi-scale
features combines all dimension levels of sperm characteristics
to provide an accurate segmentation result. This process is
visually depicted by the middle yellow arrows in Fig. 3.

Due to the relatively low resolution (96 DPI - dots per
inch) of the image acquisition with the 20× objective and
Basler A601f camera, the intricate morphology of the tiny
sperm poses a challenge in accurate recognition. Considering
these limitations, the analysis is focused on the following
morphology parameters: head area, head length, head width,
head ellipticity, head angle, and tail length. The automatic
differentiation between the head and tail components of sperms
is performed based on the distance between the compo-
nent boundary and the skeleton of the sperm, as outlined
in [34].
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Fig. 5. (a) Lateral attention with squeeze-excitation layer. (b) Multi-scale
attention through LAttn in different scales. FC is an acronym for a fully
connected layer.

5) Loss Function: To quantify the discrepancy between the
prediction mask and ground truth, we employed cross-entropy
loss for the pixel-level classification in the segmentation task
of SFCNet. The cross-entropy loss formula, LCE(p, c) is
calculated as following:

LCE(p, c) = −
1
N

N∑
n=1

C∑
c=1

yn,c log2(pn,c) (2)

where N represents the number of input images, C denotes the
number of classes, yn,c is the binary indicator (0 for False, 1
for True), and pn,c is the predicted probability of the nth image
belonging to the cth class.

C. Multi-Scale Attention for Tracking Proposal

1) Lateral Attention With SE Layer: To capture both global
(i.e., color distribution, object interaction, and texture of entire
image) and local (i.e., corner, edge, specific pattern, and
color) representations of the sperm, a lateral attention (LAttn)
mechanism with a squeeze-excitation (SE) layer is introduced.
The LAttn mechanism consists of a 3×3 convolution, followed
by an SE layer and 1 × 1 convolution. Two convolution
operations are designed to learn the local features of sperms,
while the SE layer is tasked with global features. The SE layer
is adapted from [35]. The LAttn mechanism is presented in
Fig. 3c and detailed in Fig. 5a.

As shown in Fig. 5b, the LAttn is utilized in four stages
(i.e., S2, S3, S4, and S5). The SE layers in LAttn can generate
attention feature maps at multiple dimensions, functioning as
multi-scale attention mechanisms. To enhance features with
cross-scale information for small objects, the feature map from
the lower stage is integrated with the upsampled feature map
from the higher stages.

2) Muti-Scale Region Proposal: To generate bounding
boxes for sperm objects, a considerable number of region
proposals are introduced to encompass detected objects. How-
ever, as these proposals are generated randomly, this process

can be both time- and resource-intensive. Inspired by Faster
RCNN [36], we apply a small network with a 3×3 convolution
to slide across the feature map. Furthermore, it is essential
to incorporate larger-dimension features from lower network
stages to bind an object as small as a spermatozoa effectively.
Therefore, the merged feature maps from LAttn and upsam-
pling at diverse stages are employed to produce proposals with
hierarchical dimensions, as depicted in the light-grey dash box
of Fig. 3. This multi-scale region proposal method produces
bounding boxes of varying sizes, which can exceptionally
localize the small sperm objects. This is particularly important
as conventional region proposal networks may undervalue
small object regions (i.e., those occupying less than 1% of
the area) [36], [37].

3) Sperm Motility Analysis: Given that the area occupied
by a sperm head is significantly larger than that of its tail, the
analysis of sperm motility is primarily conducted by tracking
the head’s movement. The center of the bounding box sur-
rounding the sperm head is designated as the sperm’s position.
Sperm motility parameters are then calculated based on the
sperm’s trajectory, for example, VSL, which represents the
velocity along the straight-line path. It is important to note that
spermatozoa may overlap, leading to interpolated trajectories.
To ensure accurate trajectory mapping of the target sperm,
the joint probabilistic data association filter (JPDAF) [38] was
utilized to associate trajectory points that belong to the same
sperm.

Assume that the state of a sperm at frame t is represented
as [xt , yt , x ′

t , y′
t ]. The Mahalanobis distance Dt , computed by

JPDAF between the actual position Qt = [xt , yt ] and predicted
position Q̃t = [x̃ t , ỹt ], is given by:

Dt =

√
(Qt − Q̃t )F−1(Qt − Q̃t ) (3)

where F represents the covariance matrix of the correct
measurement.

Additionally, assume that the association probability
between the predicted and actual positions is represented as
Pt (α) for the α scenario. The total association probability,
denoted as βo,m(t), is updated by traversing and summing up
all scenarios for the oth sperm and the m th measurement. The
total association probability is defined as follows:

βo,m(t) =

∑
α

Pt (α)ωo,m(α, t) (4)

where Pt (α) is inversely proportional to Dt , and ωo,m(α, t)
equals 1 if sperm o is associated with measurement m in
case α, and 0 otherwise.

4) Loss Function: The task of sperm tracking requires a
regression loss for calculating bounding box coordinates and
determining the category of the bounded object. Therefore,
we employ smooth L1 [39] and cross-entropy losses for sperm
bounding box regression and classification, respectively. The
smooth L1 loss can be formulated as follows:

LReg(tc, g) =

∑
k∈{x,y,w,h}

L1(tc
k − gk) (5)
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in which

L1(x) =

{
|x | − 0.5, if |x | ≥ 1
0.5 x2, otherwise

(6)

where the ground truth coordinates are represented as gi =

(gx, gy, gw, gh)
i for class c, and the predicted values are

represented as tc
k = (tc

x , tc
y , tc

w, tc
h )k .

The cross-entropy loss is the same as in Eq. (2), but the
loss is calculated at the box-object level. The total tracking
loss for SFCNet is then given by:

LDet = [c ≥ 1]LReg(tc, g) + LCE(p, c) (7)

where [c ≥ 1] equals 1 when c ≥ 1 (sperm), and 0 otherwise
(background).

IV. EXPERIMENTAL RESULTS

The proposed SFCNet architecture was evaluated and
compared with the state-of-the-art (SOTA) machine learning
algorithms in the experiments. The training and evaluating
configurations are first introduced in Sec. IV-A. Subsequently,
the visualization and analysis of the segmentation results are
elucidated in Sec. IV-B, followed by an analysis of tracking
results in Sec. IV-C. Finally, a comprehensive case study and
ablation study are conducted and illustrated in Sec. IV-D and
Sec. IV-E.

A. Implementation Details

1) Evaluation Metrics: For sperm segmentation, we empl-
oyed five metrics for quantitative evaluation, including the
Sørensen-Dice coefficient (Dice), mean intersection over union
(mIoU), enhanced-alignment metric (E-measure) [40], sensi-
tivity, and precision. Specifically, Dice, mIoU, E-measure, and
sensitivity were applied to quantify the measurement, while
precision was used to qualify the measurement.

For sperm tracking, we utilized three metrics for quantita-
tive evaluation: average precision at 0.50:0.05:0.95 of mIoU
(AP), average precision at 0.50 of mIoU (AP50), and average
precision at 0.75 of mIoU (AP75). Since sperm tracking should
be available in the actual application of microrobotic manipu-
lation, frames per second (FPS), giga floating point operations
per second (GFLOPS), and the number of parameters
(# parameters) were measured to evaluate the time efficiency
and computational cost.

The results of segmentation and tracking tasks were com-
puted by averaging three separate training and testing cycles.

2) Other Configurations: For the sperm segmentation,
the mini-batch size was set to 4. Pre-processing the input
images involved random crop, resizing with a dimension of
512 × 512, Gaussian blur, distortion, and rotation. The opti-
mization process employed the AdamW optimizer [41] and
adopted cross-entropy loss and a 0.03 weight decay. The learn-
ing rate was adjusted using a cosine schedule [42], decreasing
from 5 × 10−5 to 1 × 10−6. Furthermore, the comprehensive
training was carried out for 100 epochs.

For the sperm tracking task, the mini-batch size was set
to 16, and the input images were resized to a dimension of
800×800. No additional data processing method was required.

TABLE I
SEGMENTATION RESULTS FOR VARIOUS METHODS

ON THE SPERMSEG DATASET. UNIT: %

The optimization process hinged on the SGD optimizer in
conjunction with adopting smooth L1 and cross-entropy losses.
The learning rate was adjusted using a multi-step schedule,
decreasing from 0.02 to 2×10−5. Additionally, comprehensive
training was executed for 1000 iterations.

The codes were implemented by using the PyTorch [43]
and Detectron2 [44] packages. The experimental computations
were conducted on an RTX3090 GPU paired with an Intel
Xeon Platinum 8375C CPU. All the aforementioned configu-
rations of segmentation and tracking tasks are consistent across
all tested methods. The encoder part of all tested networks was
pretrained in the ImageNet-1K [45] dataset.

B. Segmentation Results and Analysis

1) Segmentation Evaluation: To evaluate the efficacy of
the proposed method, eight SOTA tiny-object segmentation
models (i.e., OCRNet [21], DeepLabV3+ [24], CFANet [13],
UNet [19], UNet++ [20], PraNet [12], and HRNet [23]) were
included as reference points in the experiments.

As illustrated in Tab. I, the SFCNet yielded the highest
Dice of 64.14%, mIoU of 53.53%, E-measure of 97.93%,
sensitivity of 63.46%, and precision of 65.67%, outperform-
ing the SOTA small object segmentation methods. For the
coincidence degree between the detected region and ground
truth, SFCNet delivered an improved performance of 4.19% ∼

28.39% Dice and 3.14% ∼ 18.88% mIoU than SOTA methods,
demonstrating that SFCNet is capable of locating the regions
of sperm morphology effectively and provided a reliable visual
signal for robotic cell surgery at micro-scale.

Furthermore, SFCNet also achieved up to 67.09% better
E-measure among all tested models. Since E-measure simul-
taneously considers pixel-level (i.e., region coincidence) and
image-level (i.e., noise and blur) errors, it can provide a
comprehensive segmentation result on sperm recognition. The
best E-measure attained by SFCNet has revealed superior
robustness in recognizing sperm, regardless of image noise
and blur.

Besides, SFCNet obtained 4.97% ∼ 28.31% better sen-
sitivity and 2.24% ∼ 9.21% better precision compared to
other tested models. Such results underscore that SFCNet can
effectively perceive sperm by ensuring all sperms are likely
to be detected, and the positively detected regions will likely
cover sperms.

Additionally, the OCRNet obtained less than 40% Dice,
E-measure, and sensitivity in the SpermSeg dataset, with
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Fig. 6. Errors in automated morphometric analysis using top-7 deep learning
methods compared to the manual benchmark.

over a 25% gap of these metrics to SFCNet, suggesting that
OCRNet hardly discriminated sperm from the background.

2) Sperm Morphology Analysis: To assess the perfor-
mance of automated segmentation algorithms in the medical
application of tested models, morphometric parameters were
measured. The ground truth of 30 tested sperm images with
321 spermatozoa instances was measured using ImageJ by
averaging annotation results from three independent expert
technicians. The errors (± standard error) associated with
automated quantification were assessed across various mor-
phometric parameters using top-7 deep learning methods,
DeepLabV3+, CFANet, UNet, UNet++, PraNet, HRNet, and
SFCNet. These errors are summarised in Fig. 6. Since OCRNet
struggled to differentiate sperms in the images and obtained
more than 90% errors, OCRNet was not presented in Fig. 6.

The proposed SFCNet achieved the smallest errors in
all sperm morphometric parameters, except for the head
area, where it recorded the second-smallest errors. The
error percentages ranged from 11.27±2.70% for head area,
0.65±0.17% for head length, 5.59±1.21% for head width,
5.14±0.94% for head ellipticity, 0.59±0.19% for head angle,
and 14.89±2.74% for tail length. These results outperformed
the second-best model, HRNet, by reducing averaged errors
by up to −8.94%.

Notably, the errors in measuring sperm tails were the most
pronounced among tested parameters. This phenomenon could
be attributed to the relatively low DPI of 96 used in each image
capturing using the 20× objective. Addressing this challenge
could involve leveraging image enhancement techniques to
boost the recognition of sperm tail features.

3) Visualization and Error Analysis: In addition to the
quantitative evaluation, the segmentation results of the top-4
methods, UNet++, PraNet, HRNet, and SFCNet, were also
compared with an in-depth sperm morphology analysis.

The prediction results of segmentation masks are exem-
plified in Fig. 7. It is clear from Fig. 7cd that UNet++

and PraNet struggled to recognize sperm locations, as evident
from images without continuous masking. In other words, the
detected sperm regions are disconnected or broken, as shown
in the partially enlarged blue circles in Images No. 1 and 3
in Fig. 7cd. Conversely, although the second-best algo-
rithm, HRNet, successfully recognized sperm continuous

TABLE II
TRACKING RESULTS FOR VARIOUS METHODS ON SPERMTRACK DATASET.

FPS/GFLOPS USES THE ARBITRARY UNIT. “#” IS THE
ABBREVIATION FOR “THE NUMBER OF”

morphology in Fig. 7e, it fell short in precisely identifying
sperm tails. Meanwhile, UNet++, PraNet, and HRNet ignored
several sperm on the left-bottom part of Image 1. In contrast,
the SFCNet exhibited the capability to accurately identify all
sperm positions and effectively reconstruct the morphologies
of sperms entities within the image (see Fig. 7f).

Furthermore, the sample sperm image has two classes, nor-
mal (negative) and abnormal (positive), represented by green
and red regions in Fig. 7. Although UNet++, PraNet, and
HRNet successfully detected the majority of sperm positions,
they mistakenly categorized normal sperms as abnormal ones
(false positive) or abnormal sperms as normal ones (false
negative), as visually highlighted in Image No. 1 and 3 in
Fig. 7c-e. However, the SFCNet proficiently differentiated
normal and abnormal sperms, aligning closely with the ground
truth, as evidenced by the green and red regions in Fig. 7bf.

In addition, several sperms may appear in the boundary of
the receptive field. These sperms cannot be fully visualized,
and only a partial head or tail can be observed. On the Image 2
purple circle region in Fig. 7, a sperm tail was annotated by
doctors and another sperm tail was detected by PraNet and
SFCNet, but it was not marked by the annotation. Moreover,
it is difficult to examine a sperm, given partial morphol-
ogy information. Because sperms are usually considered for
actual medical applications, it is recommended to ignore those
sperms whose bodies are not fully shown in the image.

C. Tracking Results and Analysis

1) Tracking Evaluation: To assess the effectiveness of
the proposed method, six SOTA tiny-object tracking models,
including YOLOX [37], FCOS [27], RetinaNet [26], Faster
RCNN [36], TridentNet [29], and Cascade RCNN [28], were
included as the control group in the experiments.

The tracking results on the SpermTrack dataset presented
in Tab. II illustrate that SFCNet secured the first place in
tracking sperms with 92.10% AP50, 40.14% AP, and 21.65%
AP75. Besides, SFCNet performed at the speed of 318 FPS
in tracking sperm, exceeding the requirements of real-time
medical applications (i.e., > 30 FPS). Among all tested
methods, SFCNet shows the competitive computational effi-
ciency, 249.30 GLOPS, which is around 30% larger than
the fastest method, FOCS, but achieved 8.90% better AP50.
Moreover, SFCNet has 49.56 M # parameters, smaller than the
second-best tracking method, Cascade RCNN, with −19.44 M.
These results highlight the superior performance of SFCNet in
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Fig. 7. Visualization of sperm segmentation results. (a) Original image and (b) ground truth. The others are detected results using top-4 methods: (c) UNet++,
(d) PraNet, (e) HRNet, and (f) SFCNet (ours). Normal and abnormal sperms are covered by green and red colors, separately.

Fig. 8. Errors in automated motility analysis using the top-5 deep learning
methods compared to the manual benchmark.

representation learning for sperm tracking and the computa-
tion efficiency of SFCNet in cell medical surgery and cell
engineering.

2) Sperm Motility Analysis: To assess the performance of
automated tracking algorithms in the medical application of
tested models, the morphometric parameters were measured.
Similar to Sec. IV-B2, we applied ImageJ to annotate the cen-
ter points of sperm heads with 59 tested images by averaging
annotation results from three independent expert technicians.
The errors (± standard error) associated with automated quan-
tification were assessed across various motility parameters. For
more precise visualization, only top-5 deep learning methods,
RetinaNet, Faster RCNN, TridentNet, Cascade RCNN, and
SFCNet, are discussed, and their sperm tracking errors are
summarised in Fig. 8.

The proposed SFCNet achieved the smallest averaged errors
in all sperm motility parameters, except for MAD, where
it recorded the second smallest averaged errors. The error
percentages varied from 6.53±4.95% for VSL, 9.47±5.95%
for VCL, 7.97±5.79% for VAP, 12.92±7.85% for ALH,

37.26±20.74% for MAD, 1.97±0.24% for LIN, 5.91±1.69%
for WOB, and 2.03±1.41% for STR, outperforming the
second-best model, Cascade RCNN, by an averaged reduction
of −43.34%. Despite SFCNet recording the second smallest
averaged errors in MAD, its highest MAD error was 5.42 %
lower than that of the top-performing method, Cascade RCNN.

Remarkably, the errors in measuring MAD were the most
pronounced among tested parameters. This phenomenon could
be attributed to errors in the curve fitting for computing
angular displacement. Addressing this challenge could involve
using a camera to capture a higher image resolution.

3) Visualization and Error Analysis: In addition to the
quantitative evaluation, the tracking results of the top-4 meth-
ods, Faster RCNN, TridentNet, Cascade RCNN, and SFCNet,
were further compared for an in-depth sperm motility analysis.

The prediction results of tracking bounding boxes are
revealed in Fig. 9. The results indicate that almost all sperm
can be located by the top-4 methods, except TridentNet,
which ignored one sperm in Image No. 1 (see first row
in Fig. 9d). While Faster RCNN and Cascade RCNN can
locate all sperm positions, they struggled to effectively identify
the boundary of sperm head (see the first row in Fig. 9ce).
Conversely, SFCNet successfully recognized sperm heads with
the consistent bounding box as ground truth (see the first row
in Fig. 9bf).

Unlike whole sperm segmentation in Sec. IV-B3, sperm
tracking only focuses on the head of the sperm. Therefore,
debris and dead sperm cells are more likely to be misclassified
as sperm heads (false positive cases). For example, as pre-
sented in Images No. 2 and 3 in Fig. 9cd, Faster RCNN and
TridentNet wrongly categorized debris and dead sperm cells as
sperm heads. Meanwhile, Faster RCNN, TridentNet, and Cas-
cade RCNN mistakenly estimated the micropipette as sperm,
a false positive case that might cause medical accidents during
surgery. In contrast, the SFCNet exhibited the capability to
identify all sperm positions accurately and effectively without
focusing on non-sperm objects (see Fig. 9f).
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Fig. 9. Visualization of sperm tracking results. (a) Original image and (b) ground truth. The others are detected results using top-4 methods: (c) Faster
RCNN, (d) TridentNet, (e) Cascade RCNN, and (f) SFCNet (ours). Each box proposal has a random and identical color.

TABLE III
AUTOMATED QUANTIFICATION OF SIX SPERM SAMPLES. AU: ARBITRARY UNIT. UNCOMMON DATA IS UNDERLINED

Additionally, Faster RCNN provided multiple tracking box
proposals for a sperm near the edge of Image No. 1 in Fig. 9c,
giving the wrong signals that there were two sperms in the
same place.

D. Case Study

To investigate the novel SFCNet method in the analy-
sis of sperm morphological structures and motility, a case
study was performed as a demonstration by randomly select-
ing six sperm samples. Subsequently, the predictive values
of morphology and motility parameters computed by the
SFCNet are presented in Tab. III. The calculated morpho-
logical parameter values for healthy sample sperms were
12.50∼13.63 µm2 for head area, 4.95∼5.50 µm for head
length, 3.00∼3.54 µm for head length, 1.40∼1.83 AU for
head ellipticity, and 38.60∼44.24 µm for tail length. Moreover,
Sperms No. 1, 4, and 5 exhibit more extensive head length than
width, leading to abnormal head ellipticity (>2.7). Meanwhile,
the tail length of the first sample fell below 30 µm, one of the
characteristics of abnormal sperms. In addition, Sperm No. 6
has a comparatively small head length (4 µm) and ellipticity
(1.33), which are considered abnormal sperm features.

In addition to morphology analysis, the motility measure-
ment of sperm, as indicated in the right part of Tab. III, reveals
that Sperms No. 1, 5, and 6 exhibited minimal movement, with

VCL lower than 4.5 µm/s. Furthermore, Sperm No. 2 displayed
6.81 µm/s VSL, 7.24 µm/s VCL, and 6.67 µm/s VAP, indi-
cating its weak motility characteristics. Consequently, Sperms
No. 1, 2, and 6 are regarded as abnormal in terms of moving
velocity. In contrast, Sperms No. 3 and 4 exhibited VCL
and VAP exceeding 10 µm/s, and values of ≥0.87 for LIN,
WOB, and STR, which fall within the normal range for sperm
characteristics.

Furthermore, sperm No. 2 exhibited regular motility but had
abnormal morphology. Thus, sperm No. 3 was identified by
SFCNet as the only healthy sperm among the six samples.

E. Ablation Study

1) Network Ablation: This section investigates two ele-
ments of the SFCNet: the start stage of the cross-scale
feature map guide and the dimension of the fusing feature
(see Sec. III-B) for discriminating sperms in the SpermSeg
and SpermTrack datasets. The configurations of training and
testing follow Sec. IV-A. The results of the ablation study are
presented in Tab. IV.

As shown in Tab. IV configurations (a-c, e), the later the
start stage of the cross-scale guide, the lower the SFCNet per-
formance, decreasing from 2.74% to 16.54% Dice and 0.44%
to 1.81% AP50 in SpermSeg and SpermTrack datasets, sepa-
rately. Such results suggest that the relatively high-dimension

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on October 22,2024 at 03:31:31 UTC from IEEE Xplore.  Restrictions apply. 



10 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

TABLE IV
ABLATION STUDY FOR SFCNET ON SPERMSEG SEMANTIC

SEGMENTATION AND SPERMTRACK TRACKING

TABLE V
ABLATION STUDY FOR MICROSCOPE MAGNIFICATION

ON ADDITIONAL DATA USING SFCNET

features cannot satisfactorily contribute to supervising the
model for learning the representation of small objects without
the assistance of low-dimension features.

Furthermore, the influence of the dimension used to fuse
multi-scale features for SFCNet performance can be viewed
in Tab. IV configurations (d-e). Notably, resizing dimension
ceases from 1/32 to 1/2 for fusing feature maps, leading to an
increase in Dice by 1.03% ∼ 26.51% and AP50 by 0.32% ∼

1.95%, in SpermSeg and SpermTrack datasets, individually.
The results demonstrate that a comparatively high resize
dimension can maintain relatively plentiful information about
tiny sperm objects.

2) Microscope Magnification: This section further explores
microscope magnification’s impact, especially focusing on
20×, 40×, and 100× objective lenses. Adhering to the same
settings outlined in Sec. II, we extracted an additional twenty
images from videos of the same sample captured separately
by 20×, 40×, and 100× objective lenses. The gathered data
was annotated at both the pixel and box levels in accordance
with Sec. II-B. The model tested was the previously trained
SFCNet, which had been used in earlier segmentation and
tracking tasks (see Sec. IV-B and Sec. IV-C). The trained
SFCNet was then employed in testing, maintaining the same
settings as those detailed in Sec. IV-A. The experimental
results are in Tab. V.

As demonstrated in Tab. V, the segmentation and tracking
performance of SFCNet improves from 60.43% Dice and
92.59% AP50% to 66.93% Dice and 97.11% AP50% in sperm
segmentation and tracking tasks, as the objective lens is
increased from 20× to 100×. The results suggest that sperm
recognition can be enhanced as the occupied area within the
image increases. However, as the magnification level of the
objective lenses is increased from 20× to 100×, the number
of sperms per image decreases from 14 to 2. This study
utilizes 20× objective lenses because it provides acceptable
sperm recognition results for distinguishing between healthy

and unhealthy sperms, and its relatively large field of view
allows for the detection of a more significant number of sperms
simultaneously.

V. DISCUSSION

Recent advanced frameworks can be utilized as the encoder
portion of the suggested SFCNet algorithm. Our research
primarily concentrates on the extended modules for identifying
small medical objects. Hence, we only selected the commonly
used framework, ResNet50, as the encoder part of SFCNet.
Furthermore, the SFCNet could operate as a universal structure
to integrate with other segmentation modules (e.g., OCRNet,
PSPNet, and LRASPP) in a plug-and-play approach.

Additionally, the SFCNet is based on the multi-scale feature
correlation design, which is practical for learning features of
objects occupying relatively small regions in images. There-
fore, SFCNet has significant potential to be applied to the
analysis of other small medical objects such as blood cells,
retinal vessels, etc.

From a real-time application perspective, the SFCNet takes
0.026 seconds to perform segmentation and tracking tasks
for an image on the clinical host computer. In other words,
it can achieve 38 FPS when analyzing each frame in an
online video captured by a camera. Therefore, it is feasible
to use SFCNet for real-time analysis of sperm if the host
computer of a clinical device can be similar to or better
than ours. We recommend that the host computer integrates
an RTX 3090 GPU, a reliable CPU, and other compactable
hardware.

VI. CONCLUSION

In this paper, we introduce a novel tiny object recognition
network, the SFCNet, to improve the performance of sperm
segmentation and tracking. Experimental results suggest that
the SFCNet can effectively differentiate sperms and quanti-
tatively measure their morphology and motility parameters.
The proposed SFCNet delivered higher performance than other
SOTA methods by over 4.19% in Dice and 1.32% in AP.
Moreover, the SFCNet achieved errors of less than 15% in ana-
lyzing sperm morphometric and motility characteristics, with
the exception of a 37.26% error in MAD measurement. Visu-
alization results demonstrate that the SFCNet can accurately
detect all sperm locations and distinguish between normal
and abnormal sperm. Furthermore, the precise localization
and tracking of selected high-quality sperm provide accurate
feedback to the automated system for microrobot-assisted
reproductive treatment.
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