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Medical image registration, by transforming two or more sets of imaging data
into one coordinate system, plays a central role in medical robotics and intelligent
systems from diagnostics and surgical planning to real-time guidance and
postprocedural assessment. Recent advances in medical image registration have
made a significant impact in orthopedic, neurological, cardiovascular, and
oncological applications.The recent literature in medical image registration is
reviewed, providing a discussion of their fundamentals and applications. Within
each section, the registration techniques are introduced, classifying each method
based on their working mechanisms, and discussing their benefits and limita-
tions are discussed. Recently, machine learning has had an important impact on
the field of image registration, yielding novel methods and unprecedented speed.
The validation of registration methods, however, remains a challenge due to the
lack of reliable ground truth. Medical image registration will continue to make
significant impacts in the area of advanced medical imaging, as the fusion/
combination of multimodal images and advanced visualization technology
become more widespread.

1. Introduction

Medical robotics and automated image guidance have been use-
ful technologies for changingmodern surgical and interventional

procedures since the mid-1980s.[1,2] The
successful use of advanced intelligent sys-
tems in the medical field is attributed to
the advantages of combining the strengths
of humans and computer-aided technology
in an information-intensive setting.[3] As
described in other literature, medical
robots and intelligent systems are consid-
ered as information-driven tools that assist
operators/surgeons with improved efficacy,
increased safety, minimized invasiveness,
and reduced morbidity.[4] Figure 1 illus-
trates the overall structure of the medical
robotic system, which includes the analysis
of medical information, surgical modeling/
planning, real-time action, and postproce-
dure evaluation. Among all the enabling
modules, the analysis and registration of
medical images play a central role in
enabling humans and robots with addi-
tional information that is otherwise

unavailable or inaccurate from manual examination of a single-
image modality.

As an integral part of medical robotics and intelligent systems,
image registration can be used throughout the entire process of
clinical practice, beginning from diagnostics and procedural
planning to real-time guidance and postprocedural evaluation
of surgical or therapeutic outcomes. For example, neurologists
can conduct a diagnostic assessment by overlaying a patient’s
images on a representative image of a disease, which can be
obtained from an atlas of neural diseases.[5] Alternatively, regis-
tration can be used intraprocedurally by overlaying the surgical
paths or target locations (that were determined prior to the
procedure) with real-time images that visualize the position
and orientation of surgical or transcatheter tools.[6] Further-
more, registration can be used to compare pre- and postproce-
dural images to allow direct and quantitative assessment of
the intervention.[7]

In general, medical image registration deals with the transfor-
mation of multiple imaging datasets into a single coordinate sys-
tem, either in 2D or 3D. In this review, to simplify the discussion,
we focus on the problem of registering two images: the source
image (IS, also known as the moving image) and target image
(IT, also known as the fixed image). The two images are related
by a transform matrixM. The problem of registration is modeled
to determine the most suitable transform matrix by optimizing
an energy function
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ε ¼ F ðIT , IS · MÞ þRðMÞ (1)

where the first term F quantifies the alignment of transformed
source image (IS �M) and the target image IT. The first term
F is also referred to as the matching criterion, similarity/
dissimilarity metrics, or the distance between two measured
targets. The second term R regularizes transformation with cer-
tain deformation models, aiming to meet any specific properties
in the solution that the user/application requires. Theoretically,
an image registration algorithm consists of three building blocks:
1) feature detection: 2) image transformation; and 3) quantifica-
tion of alignment and optimization. The overall workflow for
image registration is shown in Figure 2.

By combining various choices for three building blocks, one
can create a wide variety of image registration solutions.
Traditionally, the registration methods are classified based on
nine basic criteria that are dimensionality, nature of registration
basis, nature of transformation, domain of transformation, inter-
action, optimization procedure, modalities involved, subject,
and object.[8,9] Each of the criteria has multiple hierarchical clas-
sifications, further dividing these methods into subcategories.
Although this classification method can provide a well-organized
library for researchers to search for appropriate solutions, it may
also present complications because a single registration tech-
nique can be classified into multiple groups. We, therefore, dis-
cuss the registration techniques in Section 2 and 3 from two
perspectives: the fundamentals of registration and transformation
and optimization. Within each section, we introduce fundamen-
tals of the methods, classify various techniques based on their
working mechanisms, and discuss their benefits and limitations.

In recent years, machine learning (ML) has attracted extensive
interest in medical image registration and achieved noticeable
progress for many applications.[10,11] Therefore, we also include
a subsection to discuss the use of ML-based methods. Following
the discussion in Section 2 and 3, we review the clinical appli-
cations, aiming to provide a useful reference for biomedical engi-
neers, clinical researchers, or physicians developing or using
registration technologies. Finally, we present perspectives on

new challenges and future directions in medical image registra-
tion. As the goal of this review is to highlight recent advances, a
majority of the publications highlighted in this review are from
within the last decade; however, readers interested in more
expansive discussions may refer to several prior reviews.[12–14]

2. Fundamentals of Registration Methods

This section explains the fundamental differences among a vari-
ety of medical image registration methods based on the involved
image modalities (Section 2.1), dimensionality (Section 2.2), fea-
ture basis (Section 2.3), and processing levels (Section 2.4).

2.1. Monomodal Versus Multimodal Image Registration

In monomodal registration, images acquired from the same
types of imaging sensors are registered together, whereas in mul-
timodal imaging registration, the images to be registered are cap-
tured from different modalities. In multimodal registration, the
images from different image modalities usually have very dis-
tinct representations. For example, soft tissues and blood vessels
are relatively clear in ultrasound or nuclear medicine imaging,
whereas bone is more apparent than tissue under radiography.
Therefore, pixel-based registration methods may not be suitable
for multimodal image registration as the pixel representations
are distinct. An extensively used approach to multimodal image
registration is based on optimizations of mutual information
(MI) between images.[15,16] Compared with intensity-based meth-
ods, which are frequently used for monomodal registration, the
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Figure 1. Image analysis and registration plays a central role in medical
robotics and intelligent systems.
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optimizations of MI have a high level of computational complex-
ity and therefore increase the runtime of registration algorithms.
To address this issue, Wachinger et al. proposed alternative
approaches by using structural representations that allow for
the calculation of the least absolute error and the least squares
for multimodal images.[15] In the study, two methods were intro-
duced based on the calculation of patch entropy and manifold
learning for multimodal registration of magnetic resonance
imaging (MRI), computed tomography (CT), and positron emis-
sion tomography (PET) brain images. Whereas the manifold
learning method has a theoretical advantage of presenting opti-
mal approximation,[17,18] the application of entropy has practical
advantages in its reduced computational complexity.[19,20]

2.2. 2D Versus 3D Image Registration

2D imaging includes modalities such as projectional radiogra-
phy, X-ray fluoroscopy, 2D ultrasound, and endoscopy imaging,
whereas 3D imaging includes CT scans, MRI, 3D ultrasound,
and nuclear medicine functional imaging. Based on the dimen-
sionalities of images, the registration algorithms can be classified
into three groups: 2D–2D, 3D–3D, and 2D–3D registration. The
2D–2D and 3D–3D registrations can be either monomodal or
multimodal, whereas the 2D–3D registration is typically a multi-
modal registration.

In 2D–2D registration, a moving image is transformed with
operations such as scaling, rotation, and two orthogonal transla-
tions. In comparison, registration of 3D images typically includes
scaling, 3D rotations, and three orthogonal translations and
therefore has increased computational complexity. 3D registra-
tion often utilizes additional capturing parameters (e.g., scaling
factors, C-arm angles) to reduce the number of unknown factors
and minimize the searching regions for parameters to be opti-
mized.[21] For example, Dibildox et al. recently reported a 3D–3D
registration work to combine 3D computed tomography angiog-
raphy (CTA) models to biplane reconstructions, aiming to
improve image guidance during percutaneous coronary inter-
ventions of chronic total occlusions. In this study, they used
precalibrated pixel sizes and the orientation of fluoroscopy
images to determine the orientated Gaussian mixture model

for achieving a rigid spatial alignment with a point-set registra-
tion approach.[22]

In 2D–3D registration, a typical solution is to apply 2D–2D
methods by slicing the 3D imaging dataset into multiple 2D
images and registering each 2D image with the target. This solu-
tion is extensively used in the registration of radiography images
and often referred to as the generation of digitally reconstructed
radiographs (DRRs). To achieve this method of registration,
initially, one needs to determine the orientation or pose of 2D
images.[23] For example, to register the 2D fluoroscopic images
with 3D CT data, Varnavas et al. used a generalized Hough trans-
form for initial pose determination and registered fluoroscopy
images with the DRRs achieved at the determined poses.[24]

2.3. Intrinsic Versus Extrinsic Registration Methods

The extraction of the common features in the two registering
images is based on either natural anatomical characteristics or
external fiduciary markers used in the target imaging relations.
Accordingly, depending on the information basis, the registra-
tion methods can be generally classified as intrinsic or extrinsic
registration methods.

Extrinsic registration relies on artificial fiduciary markers that
are attached to the patient (either on the surface or inside the
body of the patient). The fiduciary markers are designed to have
arbitrary shapes, high contrast, and are clearly visible, making
them easy to detect in all imaging modalities.[25] As a result,
the extrinsic registration methods with artificial markers are
comparatively easy, fast, and can often be automated.[26,27] The
main shortcomings of extrinsic methods are the invasiveness
of markers to the patients and the time and effort required to
prepare and affix the marker [28]. Despite the need of noninvasive
markers, the acceptance of these markers by patients remains
an issue. Fiduciary markers are typically made of heavy metals
(e.g., gold or platinum) to achieve a high contrast under radiog-
raphy.[25] However, these markers may not be suitable for MRI
registration, as metallic materials must be strictly avoided in MRI
scanners.[29,30]

Intrinsic registration relies only on the patients’ natural
body parts. Without the assistance of artificial markers, the

Figure 2. A representative workflow of medical image registration.
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registration methods may require more complicated algorithms
by taking the unstructured anatomical features as the common
fiduciary markers. One criterion for selecting these natural fidu-
ciary markers is to ensure they are visible under both imaging
modalities. For example, bone structures are often selected as
common land markers as they are the most distinctive structures
in many imaging modalities, including X-ray radiography, MRI,
and ultrasound imaging.[31–33]

2.4. Intensity-, Gradient-, and Feature-Based Registration
Methods

The fundamental approach of image registration is to determine
the locations of the paired points in 2D (i.e., represented as pix-
els) or 3D spaces (i.e., represented as voxels) and to use those
locations for calculating or searching for the optimal transform
matrix. To detect the anatomical feature or artificial fiduciary
markers, medical images may undergo three levels of process-
ing: intensity comparison,[34,35] gradient calculation,[36,37] and/
or feature extraction.[38]

The methods using intensity comparison are also called
pixel/voxel-based registration or area-based registration.[39,40] For
intensity-based registration, the algorithm analyzes the pixel/voxel
value in the entire image and does not rely on gradients or features
calculated from the neighboring pixels/voxels. The intensity-based
methods are preferably used for images that do not have many
prominent details or distinctive features that can be well defined
by local shapes or structures.[41,42] A common type of intensity-
based registration method is template matching, which compares
the gray scales or color values of each pixel between the source and
target images.[43] Other pixel- or area-based methods include
binarization, where an appropriately set threshold value for pixel
intensities is used to segment the region of interest.[44] This
method is suitable for extrinsic registration,[45] as the fiduciary
marker has high contrast from the background.[46,47] As medical
images captured from different modalities have very distinct dif-
ferences in pixel intensity, pixel-based methodsmay fail to address
multimodal image registration and therefore are preferably used
for monomodal registration.

To address the registration of images where the intensities
have significant differences, one solution is to use gradient-based
registration methods to further process the images by calculating
the derivatives from neighboring pixels.[36] Based on those calcu-
lations, the contour of the extrinsic fiduciary marker or intrinsic
anatomical structures can be detected. The classical gradient cal-
culation methods include Canny[48] and Sobel convolutions.[49]

However, these basic convolutions using predefined kernels
may not be effective for many applications where the gradients
in the two registering images do not have large similarities. In
those cases, normalized gradient fields may be applied to align
the gradient direction of the two images, unaffected by their
gradient magnitude differences.[50] Alternatively, higher levels
of feature extraction (e.g., straight line, circle, intersection, or cor-
ner) are applied using other transformations (e.g., Hough trans-
formation,[51] Harris operation,[52] and Laplacian of Gaussian
transformation).[53]

In most cases, especially for intrinsic deformable registra-
tions, there is little structural information for building

predefined features, and therefore automated feature extraction
methods are needed. Examples of automated feature extraction
algorithms include features from accelerated segment test
(FAST),[54] binary robust independent elementary features
(BRIEF),[54] scale-invariant feature transform (SIFT),[55] speeded
up robust features (SURF),[56] binary robust invariant scalable
key points (BRISK),[57] and maximally stable external regions
(MSER).[58] The comparison of feature extraction algorithms
has been examined in studies by Tareen and Saleem and
Kashif et al.[59,60] In general, the SIFT method was reported to
produce the best matching results and outperforms other generic
methods for processing radiographic images.[61] However, recent
research on the registration of conventional optical images also
reported that a combination of FAST feature points and SURF
descriptors could produce better registration results than the
classic SIFT algorithm and significantly reduce the computa-
tional cost to achieve fast image matching.[62]

3. Transformation and Optimization in Medical
Image Registration

As previously mentioned, image registration can be modeled as a
mathematical problem to find a transformationM by optimizing
an energy function. In general, the transformation methods can
be classified into two groups: rigid and deformable transforma-
tions. The rigid transformations are often applied in medical
applications where the imaged anatomical structures (e.g., bone
and blood vessels) do not have large deformations. In contrast,
the deformable transformations are typically developed to com-
pensate the deformation of soft tissues or morphology changes.

3.1. Rigid Registration

In rigid transformations, the points following the transformation
(x0 ∈ IS ∘ M) are computed with linear conversions from the
original points (x ∈ IS). The linear conversions include similar-
ity, affine, and projective transformations. In some classification
methods,[9] the rigid transformation does not include the affine
and projective transformation and is restricted to a narrow defi-
nition which includes only translation, rotation, and scaling.
However, in this review, we use a broad definition to consider
the affine and projective as subcategories of rigid transformation,
as both affine and projective manipulations can also be used for
registration of rigid anatomical structures. Theoretically, rigid
transformation can be described by

2
64
x01
x02
x03
1

3
75 ¼

�
R T
0 1

�264
x1
x2
x3
1

3
75 (2)

where R is a 3� 3matrix representing linear transformation, and
T is a 3� 1 vector representing translation. It can also be rewrit-
ten into a simplified version as x0 ¼ Rx þ T . In similarity trans-
formation, the linear matrix only consists of scale and rotation.
Figure 3B shows an example image produced by similarity
transformation.
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Affine transformation is often used when the target images
have a sheering effect. After affine transformation, the straight
lines remain straight and parallelism is preserved, but the length
and angles change (see Figure 3C). In a study by Jenkinson et al.,
a robust affine transformation method is proposed to minimize
the calibration errors in the voxel dimensions to achieve a 3D–3D
registration of brain images.[63] In recent years, researchers
have improved upon this method by developing new optimization
strategies for determination of the affine matrices. Ying et al.
remodeled affine registration as an optimization problem by using
the Iwasawa decomposition to introduce several reasonable con-
straints.[64] With a series of quadratic programming steps, the
new algorithm achieved performance and efficiency superior to
the previous methods reported in studies by Besl and McKay[65]

and Zha et al.[66] Another group adopted a teaching–learning-
based optimization method to solve the transformation matrix
for global 3D affine registrations.[67] The affine registration can
also be solved by treating the 2D points as complex numbers, such
that each point has a polynomial with a set of complex coefficients
that can be computed from the roots, which represent the points
in the target dataset.[68] In a previous review, Shekhar et al. com-
pared the registration performance of ultrasound volumes for dif-
ferent transformation complexities.[69]

Projective transformation is used when the imaging plane
appears tilted and the source and target images are captured
at different imaging angles. After projective transformation,
the straight lines remain straight, but the parallel lines converge
toward a vanishing point (see Figure 3D). Projective transforma-
tion can be useful in 2D–3D registrations. For instance, research-
ers have applied projective transformations to the registration of
noncalibrated 2D images with 3D Euclidean coordinates.[70] The
proposed method is based on a linear matrix inequality (LMI)
framework that can simultaneously calculate projective transfor-
mation and establish the 2D–3D correspondences without trian-
gulating the image points.

3.2. Deformable Registration

Deformable registration (also known as curved registration) uses
a nonlinear transformation matrix to convert the source images
into a distorted shape, setting the feature points to the corre-
sponding locations in the target images. In deformable registra-
tions, transformation is modeled with an additional vector term,
representing the local displacement field: x0i ¼ xi þ TiðxÞ. The
local displacement field is computed using various functions,
such as a polynomial model, piecewise affine transform,[71] or
a local weighted mean model.[72] Compared with rigid registra-
tion, deformable registration is often used for soft tissues to com-
pensate for morphological changes caused by the movement of
patients (e.g., respiration motion) or operational manipulations
caused by doctors (e.g., pulling, cutting, or stitching in surgical
procedures). Reviews of deformable registrations can be found in
the literature,[73,74] as a thorough explanation is beyond the scope
of this paper. Instead, we will discuss a few important deform-
able models that are commonly used.

3.2.1. Elastic Body Models

A classical deformable registration method is to model the image
as an elastic body, which is described by the Navier–Cauchy par-
tial differential equation

μ∇2uþ ðμþ λÞ∇ð∇ · uÞ þ F ¼ 0 (3)

where F is the force field that drives transformation according to
the image matching criteria, μ and λ, where μ represents rigidity
and is used to quantify the stiffness of the image and λ is Lamés
first coefficient. This model was first proposed by C. Broit to con-
sider an image grid as an elastic membrane that is deformed by
the internal and external driving forces at an equilibrium state.[75]

To find the equilibrium state, Davis et al. applied a spline

Figure 3. A medical image registration using different transform matrices. A) An original image. B) Rotation and translation transform. C) Rotation,
translation, and shear transform. D) Projective transform. E) Deformable transform.
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interpolation method based on the correspondence of fiduciary
markers that are given as a radial symmetric function.[76]

Recently, researchers also applied the elastic body spline method
with finite element models to register MRI with CT scans for
guiding prostate cancer radiotherapy.[77,78] Fayad et al. imple-
mented a nonrigid B-spline registration algorithm to derive
the deformation matrices to compensate for respiratory motion,
with the promise of providing a new PET–MRI solution for
oncology applications.[79]

3.2.2. Viscous Fluidic Flow Models

In this method, the deformable images are modeled as viscous
fluids whose changes in velocity and shape are governed by the
Navier–Stokes equations with very low Reynold’s numbers.[80,81]

Compared with the elastic body models, the fluidic models can
deal with very large deformations but at low computational effi-
ciencies. The fluidic flow models have been applied to the mono-
modal registration of MRI images for diagnosis and treatment of
Huntington’s disease[82,83] and Alzheimer’s diseases.[84]

3.2.3. Diffeomorphism Flow Models

The deformation in this model is calculated by including
flow velocity over time, according to the Lagrange transport
equation.[85] The regularization term in the energy function (i.e.,
Equation (1)) was established with constraint of the velocity field

R ¼
Z

1

0
kvtk2Vdt (4)

where kvtkV is the norm on space V of the velocity vector fields that
can be computed by a differential operation. A few theoretical
aspects to model diffeomorphism and a detailed discussion of
computational analysis were presented in previous studies.[86–88]

Recently, researchers tried to combine the diffeomorphic models
with the Demons algorithm.[89,90] The Demons algorithm was first
proposed by Thirion by considering nonparametric deformable
registration as a diffusion process in a similar way that Maxwell
did to solve the Gibbs paradox.[91] The Demons method uses
the deformation forces inspired from the optical flow equations
and alternates between computation of the forces and regulariza-
tion by Gaussian smoothing.[90]

3.3. Similarity Metrics and Optimization

To assess the suitability of a given transform (M), the alignment
performance can be quantified by using the energy or cost func-
tion εðMÞ. Accordingly, the registration problem can be formu-
lated as an optimization problem

bM ¼ argminMεðMÞ (5)

where the cost function εðMÞ is calculated by using similarity
matrices or MI. In this section, we summarize the similarity
matrices and optimization methods.

3.3.1. Similarity Metrics

The similarity metrics, which compares the differences between
the transformed source image and target image, include the sum
of squared differences (SSDs), sum of absolute differences
(SADs), normalized cross-correlation (NCCor), and normalized
correlation coefficients (NCCoe). Among these similarity met-
rics, correlation-based methods (NCCor or NCCoe) can compen-
sate variation in the scale of pixel intensity values.

The classical correlation-based methods compare the pixel
intensities between the transformed image and target image,
according to the following equation

NCCor ¼
P

x∈X ,y∈Y ðIS·Mðx, yÞ � IS·MÞðITðx, yÞ � ITÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x∈X ,y∈Y ðIS·Mðx, yÞ � IS·MÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x∈X ,y∈Y ðITðx, yÞ � ITÞ2

q
(6)

where IS·Mðx, yÞ and ITðx, yÞ are the pixel intensities at location
(x, y) in the transformed source image and target image, respec-
tively, and IS·M and IT are the average pixel intensities for both
images. The NCC method can compensate the variations in pixel
intensities and is preferable for rigid registration of monomodal
images, where translation and slight rotations are involved in the
transformmatrix. Figure 4 illustrates the registration of two ideal
fluoroscopic images with various similarity matrices.

3.3.2. Mutual Information

Mutual information (MI)–based methods, originating from
information theory, have become increasingly popular for the
registration of many image modalities. MI is a measure of the
statistical dependency between two image datasets and can be
calculated by

MI ¼
X

x∈X , y∈Y
pðx, yÞ log pðx,yÞ

pðxÞ · pðyÞ (7)

where p (x) and p (y) are the probability distributions of particular
pixel intensities in individual images and p (x, y) is the joint prob-
ability distribution in the aligned image.[92] TheMI-basedmethods
have been proven effective in 3D–3D registration of images taken
from multimodalities, such as CT and MR or magnetic resonance
(MR) and PET.[93,94] The MI-based methods do not assume a lin-
ear relationship between the pixel values of the two images but
instead they maximize the co-occurrence of the most probable
pixel values in the two images. Therefore, the MI-based methods
that utilize statistical distribution are used preferably for 2D–3D/
3D–3D image registration. One drawback of MI-based methods is
that the dependence of intensity values and neighboring voxels is
not measured. To address this drawback, one can consider incor-
porating an additional constraint to involve the dependence of
neighboring voxels (i.e., the spatial information of the images).[95]

3.3.3. Optimization

The determination of the transform matrix is often modeled as
an optimization problem to find the minimum of dissimilarity
measures (i.e., penalty function) or the maximum of similarity
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measures (e.g., cross correlations, MI).[96] The basic solution to
this optimal problem is an exhaustive search over the entire
image domain to find the best transformation matrix.
Although the global search method has a high computational
cost, it can be used when the transform matrix is simplified
(e.g., only translations are required when rotation and scaling
are known in rigid registrations). Another commonly used algo-
rithm for the calculation of the transform matrix is the iterative
closest point (ICP) algorithm that does not require all the pair-
wise correspondences of landmarks/features to be predefined
and iterates toward the nearest minimum of the local error.[97,98]

For registrations involving more degrees of freedom or
additional regularization terms for deformable registration, the
direct search strategy or simple iterative approaches do not
work because computational complexity significantly increases.
Instead, many applications apply more than one optimization
technique, frequently comprising coarse and fine optimization
steps.[99] Coarse optimization produces an initial estimate for
the alignment of the two images, using simplified transform
models with relatively low accuracy, whereas fine optimization
searches more accurate results within the “search range” pro-
duced by coarse optimization. In practical terms, the initial align-
ment in coarse registration is often achieved by visual inspection
and manual adjustment by physicians or other operators to
ensure global optimum is inside the capture range.[100]

When the initial alignment of the starting position is not avail-
able, due to the requirement of full automation or lack of effec-
tive algorithms for coarse optimization, global optimization and
heuristic search are used to determine the optimal transform
matrix. These global optimization algorithms include simulated
annealing,[101,102] Monte Carlo random sampling,[103] unscented
Kalman filtering,[104] pattern search algorithms,[105] and multi-
start search strategies.[106]

One major type of optimization method is based on the cal-
culation of the gradient of cost function. The representative
method is the gradient descent approach, which optimizes the
objective function along the direction that decreases the total

energy cost.[44,107] Gradient-based methods are often used to
maximize MI.[108] Other researchers also used conjugate gradi-
ent methods that apply prior knowledge from previous gradients
to generate a new search direction, conjugated to the previous
direction.[109] To reduce computational cost, researchers have
used stochastic gradient approaches that use the approximation
of the gradient.[109] A stochastic approach, proposed by Robbins and
Monro (RM), estimates the gradient information with a step size
that decreases with time to achieve high accuracy.[110] The RM
method was reported to achieve best performance for gradient esti-
mation whenMI and cubic B-spline free-form deformations (FFDs)
were used for registration of a subset of 3D imaging data.[111]

The gradient-free optimization methods include Powell’s
method that has been widely applied in a low degree of freedom
registration tasks.[112,113] Another nongradient optimization is the
Gaussian–Newton method that calculates the inverse Hessian
matrix from the previous iterations and uses it to determine the
search direction for the next step.[114,115] The Gaussian–Newton
method is typically used in combination with the Demons defor-
mation model to solve for multimodal image registration (e.g., MR
and CT).[116] Other local optimization methods, including the
downhill simplex method,[117] best neighbor search method,[118]

and hill climbing methods.[119,120] were reported to perform
approximately similarly in radiotherapy applications.[121,122]

3.4. Machine Learning in Medical Image Registration

The optimization of the transform matrix has been traditionally
formulated as an iterative pair-wise optimization problem
wherein several parameters need to be optimized. This is a com-
putationally expensive process, which takes a lot of time, ranging
from tens of minutes to hours, to converge on a regular central
processing unit (CPU).[123,124] Thus, two key issues can be iden-
tified in the current workflow: 1) selecting features that improve
the overall accuracy of image registration and 2) the computing
time for optimizing the transformation parameters.

Figure 4. Optimization using the similarity matrix. A) A fixed image—a fluoroscopy image showing the spine. B) A moving image—part of the fluoros-
copy image showing a cropped vertebra. C–F) A similarity value at different transform locations that is calculated using NSQD (C), NCCor (D), NCCoe
(E), and MI (F). The optimal transform location is found at the maximum point.
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Traditionally, feature extraction has been accomplished using
intensity-, gradient-, and/or feature-based methods. However,
models developed through these approaches are often specific
to a particular problem and time-consuming to design and vali-
date. To address these shortcomings, ML methods have been
developed to address the problem of selecting relevant fea-
tures.[125] These methods can be categorized as filter methods,
wrapper methods, and embedded methods.[126] However, using
these methods, the task of selecting relevant features can only be
accomplished after features have been manually defined or
potential features have been extracted using rule-based methods
(e.g., gradient). Furthermore, the task of determining the trans-
formation paramenters using these features remains mainly
dependent on using iterative pair-wise optimization.

Deep learning, a subfield of ML, offers an alternative
approach. Deep learning models have shown promising results
for performing automated feature extraction. This “learning” is
accomplished using backpropagation, which is a feedback loop
that adjusts the relative weighing parameters within a given
model to select for optimal features.[127,128] The task of optimiz-
ing the transformation parameters with deep learning models
can be recasted into a problem of function estimation, which
is sometimes referred to as amortized optimization. The ratio-
nale of learning-based registration is to move away from expen-
sive iterative optimization. Instead of solving the optimization for
each input pair of images, the problem can be formulated to find a
function that takes input images and directly computes an output
transformation. To accomplish this, a learning strategy aimed at
finding this function can be modeled using neural networks.

The early attempts in developing neural networks used a
supervised learning strategy with many pairs of images, coupled
with precomputed (ground truth) transformations. Rohè et al.
proposed a fully convolutional neural network (CNN) architec-
ture called stationary velocity fields network, which accomplished
3D image registration.[129] Once trained, the algorithm per-
formed better than the local cross correlation Demons algo-
rithm[130] on comparing predicted Dice coefficient and
Hausdorff distance and only took 6 s on a CPU (x40 faster)
and less than 30min on a graphics processing unit (GPU)
(x8000 faster). Similarly, Miao et al. used a CNN approach to
accomplish real-time 2D/3D registration.[113] They showed that
deep learning–based image registration was more robust and
accurate than traditional intensity-based registration methods.
This was evaluated by comparing success rate, capture range,
and the running time for the CNN-based approach with
Powell’s method combined with gradient correlation.[131]

Recently, Li et al. used a different class of convolutional networks
called fully connected networks (FCNs) to achieve 3D/3D
image registration.[132] The dataset comprised 1882 subjects
obtained from Alzheimer’s disease neuroimaging initiative
and LPBA40 (a human brain atlas constructed by Laboratory
of Neuroimaging). In another work, Cao et al. proposed a deep
learning–based nonrigid intermodality registration framework to
predict the transformation parameter for 3D/3D multimodal
image registration.[133] Their approach was evaluated on data
from 15 patients, each with both a CT and an MRI image,
and took 15 s to achieve image registration.

Obtaining reliable and accurate ground truths are not only
cumbersome and time-consuming, but it also limits the accuracy

of the model as it only learns from a representative annotated
dataset. Therefore, it is ideal to have an algorithm that can be
trained to learn and predict the transformation parameters with-
out the need of a priori ground truth information. To accomplish
this, de Vos et al. proposed an unsupervised learning-based end-
to-end deep learning network for deformable image registra-
tion.[134] Their algorithm was tested on two separate datasets:
1) Modified National Institute of Standards and Technology
handwritten digits and 2) cardiac cine MRI scans. Their algorithm
obtained comparable or slightly better results than a conventional
approach using Simple-Elastix. In another study, Balakrishnan
et al. proposed a general learning CNN model architecture called
VoxelMorph inspired from U-Net[135] to perform image registra-
tion with unsupervised loss. In this VoxelMorph framework, the
unsupervised learning model achieved comparable accuracy to
state-of-the-art conventional methods while operating orders of
magnitude faster on GPU. As this is a general learning model,
through the use of appropriate similarity metrics, this model could
also be principally extended multimodel image registration.[136]

Because of the elimination of the need to define features, the abil-
ity to directly provide output transformation, the learning-based
methods are promising and represent a substantial change in
medical image registration.

4. Clinical Applications

The development of image registration technologies has made
significant contributions in many clinical applications. Among
them the four major areas are orthopedic, neurologic, cardiovas-
cular, and oncological medicine.

4.1. Orthopedic Applications

Traditional radiography is particularly useful at distinguishing
calcium, soft tissue, fat, and air and therefore remains the initial
choice of imaging in bone and joint disorders. Fluoroscopy, as a
“real-time” modality, can be useful in observing motion of joints
and in guiding needles or other surgical instrument inser-
tions.[137] MRI demonstrates the ability to distinguish noncalci-
fied body tissues, which allows for evaluation of bone marrow,
joint spaces, and soft tissues.[138] Orthopedic ultrasound is gen-
erally used for detecting bone surfaces, fluid-filled spaces, and
other soft tissues and can be used to guide needle or surgical
tool placements.[139] Registration of two or more of these imaging
modalities has been studied for both diagnostic and surgical
applications.

In one recent study, registrations of high-resolution peripheral
quantitative computed tomography (QCT) scans at baseline and
12months post-kidney transplantation were used to assess endo-
cortical bone loss in kidney transplant patients. Previously, the
clinical standard for assessment of bone loss (dual-energy X-ray
absorptiometry) could not distinguish between the cortical and
trabecular bone.[140] Registration of QCT images in specific bone
regions over time can be helpful in assessing disease states, as
well as to predict future fractures. A method for automated, accu-
rate registration was proposed for assessing andmonitoringmin-
eral density using bone atlases and patients’ QCT data.[141] Both
studies utilize rigid alignment in their registration algorithm,
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which was sufficient for the registration of patient scans alone.
Rigid alignment was also utilized in a study of metastatic bone
lesion monitoring using skeleton PET/CT scans.[142] In this case,
articulated registration outperformed both deformable and solely
rigid registration in monitoring bone lesions throughout cancer
therapy.

Registration technologies have also been used in orthopedic
surgical procedures, both preoperatively and intraoperatively.
When preoperative scans are registered to postoperative scans,
the data can be used to determine the success of the operation
or monitor disease processes. Additionally, preoperative scans
registered to intraoperative imaging can assist the surgeon
with proper navigation and placement of surgical devices.
This is especially true in tumor resections, wherein MR is
superior in determining intraosseous and extraosseous tumor
extensions and CT is superior in delineating bony details[143]

(see Figure 5A). Additionally, Docquier et al. were able to transfer
these target plane coordinates to an allograft in a subsequent
CT–CT registration.[144] In this study, rigid transformation was
obtained by coarse principal components analysis (PCA) followed
by ICP rigid registration. It appears that rigid registration produ-
ces acceptable results for surgical planning.[145,146]

Registering intraoperative ultrasound images to preoperative
CT data has also been studied. Intraoperative ultrasound guid-
ance is relatively widespread and has demonstrated accuracy
when paired with fiducial markers and electromagnetic track-
ing.[147–149] However, the implantation of these markers is inva-
sive, so there is a need to explore intrinsic registrationmethods to

combine the use of ultrasound imaging and CT data. Among the
many proposed algorithms, the ICP algorithm for rigid registra-
tion was the most widespread.[149–151] Further modifications to
rigid registration algorithm have also been developed to account
for soft tissue deformation caused by the ultrasound probe on the
surface of the body.[152] However, it remains that rigid registra-
tion is widely acceptable in clinical orthopedic applications,
whereas additional steps accounting for local deformation may
be needed for some special cases.

4.2. Neurological Applications

Neuroimaging generally falls into two categories, structural and
functional. Whereas CT was the earliest technique for structural
imaging of the brain, it has been gradually replaced with MRI
due to its ability to avoid radiations and distinguish the differen-
ces in tissue types. Among the functional imagingmethods, PET,
single-photon emission computed tomography (SPECT), and
functional magnetic resonance imaging (fMRI) are the most
commonly used.[153–155]

Many advancements have been made in recent years regarding
image registration for both diagnostic and surgical applications.
Diagnostic image registration has been utilized for monitoring
certain neurological diseases, such as Alzheimer’s[156] and brain
tumors.[157] Most registration techniques involve a combination
of rigid/affine and nonrigid registration in a coarse–fine registra-
tion manner, with subsequent additions for pathologic or abnor-
mal images. Nonrigid registrations are more accurate than rigid

Figure 5. Medical image registration has been used for various applications. A) 3D–3D registration of the partial view of ultrasound to the CT model is
used for ultrasound-guided computer-assisted orthopedic surgery. Adapted with permission.[143] Copyright 2012, Springer Nature. B) A superimposed
ultrasound image on axial MRI slice was achieved by rigid and deformable registration to show the registration result for image-guided neurosurgery.
The fiducial registration error is improved by 0.11 mm from rigid to deformable registration. Adapted with permission.[162] Copyright 2014, Elsevier.
C) A deformable registration method is used to bring the 3D centerline model of the coronary arteries into biplane fluoroscopic angiograms to provide
guidance during chronic total occlusion procedures. Adapted with permission.[169] Copyright 2012, IEEE. D) An MI-based method is used to register MRI
with planning CT for image-guided radiotherapy in head and neck cancer. Adapted with permission.[177] Copyright 2017, Elsevier.
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for neuroimaging, but there is a risk for misregistration due to
the complexity of deformable models.[157] Parallelization of image
registration on the GPU and CPU have accelerated the Gaussian
pyramid computation and cost function calculation, respectively.
These advancements have been successful for diagnostic classifi-
cation of Alzheimer’s disease.[156] In addition, the inclusion of tis-
sue classification algorithms has allowed formore robust detection
of hydrocephalus, which is indicative of various neurological
pathologies.[158]

A recent trend in image-guided neurosurgery is the use of reg-
istration to combine preoperative MR with intraoperative ultra-
sound data. The recent evaluation of advanced neuroimaging
tools has reported a standard workflow for neuroimaging regis-
tration, which first compared the registration of whole-head and
brain-only (deskulled) images.[159] In this study, a linear affine
transformation is first used for initial global alignment, then fol-
lowed by a deformable transformation with more degrees of free-
dom.[160] To avoid the time-consuming manual segmentation of
the brain in MR images prior to registration, one successful tech-
nique was mapping MR intensities to resemble those of ultra-
sound before registration to patient ultrasound data. A rigid
body registration to intraoperative 3D ultrasound was then
performed with pseudo-ultrasound. This was found to be more
successful than the normalized mutual information (NMI)
method.[161] Compared with commonly used similarity measures
that utilize the calculation of cross-correlation functions, a simi-
larity measure that captures the correlation of a multichannel and
scalar image (linear correlation of linear combination, LC2) was
demonstrated to be robust in aligning 2D and 3D ultrasound to
preoperative MRI, which was validated in neurosurgical data[162]

(see Figure 5B). This LC2 similarity measure was then used to
create an algorithm that applies a deformation model after rigid
registration, which enables the automatic registration of preop-
erative MRI to intraoperative 3D ultrasound.[107]

Image registration has also been validated for its use in guid-
ing and planning intracranial electrode interventions. In neuro-
logical diseases, such as epilepsy, the localization of intracranial
electrodes post-surgery is necessary to localize epileptic areas of
the brain that may need to be excised. In practice, intracranial
electroencephalogram (iEEG) has been widely used, but it is dif-
ficult to register iEEG across patients or to other imaging modal-
ities. The registration of high-resolution preoperative MR images
with postoperative CT scans has been validated for functional
mapping of brain activity and has been successful in monitoring
and identification of seizure foci.[163] In addition to postoperative
monitoring of electrodes, rigid registration of atlas (target) MR
images to patient CT scans has proved accurate and more precise
than manual methods for determining target electrode locations
for deep brain stimulation (DBS) interventions.[164] In practice,
DBS position planning consists of rigidly registering patient MRI
to atlas images. Then, stereotactic imaging (MR or CT) is rigidly
registered with the preoperative targeting MRI.

4.3. Cardiovascular Applications

Image registration in cardiology is an evolving topic as many imag-
ing modalities can provide unique information and there is not
one prevailing imaging modality. Therefore, image registration

research involves many different modalities for preoperative plan-
ning, intraoperative guidance, and diagnostic/monitoring applica-
tions. Nonrigid registration has been shown to suppress motion-
induced artifacts when aligning template estimation images to the
reference images.[165,166] The deformable registration has been
successful in MR images as well as PET scans. Nonrigid registra-
tion has also been successful in enabling automatic segmentation
and the inference of left ventricular volume andmass, for the diag-
nosis of several cardiovascular diseases, such as hypertrophic car-
diomyopathy, arrhythmogenic right ventricular dysplasia, and
ischemic heart disease.[167]

Cardiovascular surgery and interventions can be very complex
due to the proximity of important anatomical structures. One
example of preprocedural planning involves the registration of
optical coherence tomography (OCT) to determine stent size
in vivo and X-ray angiography to determine stent positioning.[168]

Nonrigid registration of preoperative CT angiography images to
intraoperative fluoroscopic angiograms has reduced the
uncertainty of traditional 2D intraoperative guidance[169] (see
Figure 5C). Similarly, feature-based and subsequent MI-based
registration have been proposed for preoperative CT and intrao-
perative ultrasound images, and GPU implementation has accel-
erated this registration.[170] These innovations allow for active
intraoperative utility of image registration. Due to the abundance
of soft tissues in thoracic structures, nonrigid methods are pre-
ferred in cardiovascular image registration. Accordingly, tissue
tracking in cardiac interventions is necessary in some cases,
and an accurate method for this has been tested preclinically.[171]

Interestingly, rigid registration has been utilized as well in cardiac
interventions, wherein real-time X-ray fluoroscopy is aligned to
intraoperative 3D transesophageal echocardiography. Thismethod
has also shown clinically relevant accuracy and short runtimes to
be used intraoperatively.[172]

4.4. Oncological Applications

Imaging in oncology becomes increasingly important for patient
management, including diagnosis and follow-up. High-resolution
anatomic imaging modalities like CT and MRI provide informa-
tion on lesion morphology and structural changes in adjacent
tissues. However, tumor physiology/function is not clearly deter-
mined. Functional imaging, such as PET and SPECT, provides
more insights into the biological functions of tumors and their
interactions with surrounding structures. However, because of
the relatively low spatial resolution and inability to provide ana-
tomic detail, PET and SPECT are frequently registered with CT
and MR to provide robust oncological assessment.[173]

In cancer treatment, deformable image registration has been
explored to automatically define regions of interest in adaptive
radiotherapy. Initially, the registration results were validated
and deemed acceptable with the involvement of physician
reviews, as the system performance can vary significantly due
to distinct clinical presentations of the tumor.[174] To reduce
human involvement, in a later study, a new framework for quan-
titative validation of deformable registration algorithms was
developed to determine the best evaluation metric for multiple
types of clinical deformation.[175] Deformable registration has
also been introduced to allow for individualized radiotherapy
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and to overcome the differences in patient positioning among
different imaging modalities (see Figure 5D).[176–178] Fully auto-
mated methods for deformable registration of PET/MR and
PET/CT data were recently validated in the liver[176] and breast[179]

to guide radiotherapies. In addition, deformable registration has
allowed for more detailed monitoring of tumor contours during
therapy, making the targeted therapies more accurate by reducing
the toxicities.[180–182] This was validated in head and neck cancers
for CT–CT registration [180] and subsequently proven clinically
acceptable in cervical brachytherapy for MR–MR registration,[182]

demonstrating utility in a variety of anatomical areas.
In tumor resections, image guidance can be used to obtain

more accurate tumor margins and allow for more of the
surrounding tissue to be spared, thus making the surgery less
deleterious. Tissue deformation prediction[183] and continuously
updated intraoperative imaging information[184] have been
included in registration workflows as possible solutions to
account for intraoperative tissue deformations. In the laparo-
scopic resection of malignant liver lesions, preoperative CT data
has been registered to intraoperative ultrasound using a rigid
transformation with the ICP method. This registration method
increased the accuracy of the resections and spared more of the
liver parenchyma.[183] Augmented reality was also integrated
with image registration to combine preoperative MRI with intra-
operative fluoroscopy and cone-beam CT, which allows for real-
time guidance for the placement of surgical instruments and
visualization of the resected margins.[184]

4.5. Laparoscopic Applications

Laparoscopic surgery is preferable to open surgery, due to mini-
mal invasiveness, reduced complications, and shortened hospital
stay.[185] However, laparoscopic applications require a high level
of understanding of medical images to identify key anatomy
from the laparoscopic camera or monitors. Furthermore, the
insufflation used for creating space for laparoscopic tools causes
large deformation of the organs and abdominal wall, mitigating
the efficacy of surgical planning that is based on preoperative
images. These limitations in laparoscopic applications call for
the registration of the patient’s anatomic models with real-time
laparoscopic images.[185]

In contrast to orthopedic or neuronal applications, the imaged
targets in laparoscopic applications dynamically change their
size, shape, and locations. These special challenges could be
addressed by applying image registrations together with bio-
mechanical models.[186] For instance, Bano et al. demonstrated
the use of an ICP (ICP) rigid registration to initially set the mod-
els in the same coordinate system for laparoscopic liver surgery.
The initial registration results were then refined by applying a
finite element model for soft tissue deformation.[187] The bio-
mechanical mode was constructed with Young’s modulus and
Poisson’s ratio, which represent elasticity and compressibility
of the liver tissues, respectively. In another study for laparoscopic
liver surgery, Oktay et al. first calculated the deformations and
shifts in the organ position caused by gas insufflation using
the biomechanical model and then finalized registration with
a diffeomorphic registration method, which has a high degree
of freedom.[188]

Although the registration of preoperative models and intraoper-
ative images could spare the surgeons from cognitive workload, it
remains questionable in terms of perception and interpretation
errors, especially when large misalignments exist due to the relo-
cation and deformation of soft tissues. To assist surgeons for
assessment of the in vivo registration errors, Thompson et al.
described a novel method by using projected errors of surface fea-
tures to provide a reliable predictor of subsurface target registra-
tion errors for liver resection applications.[189]

5. Summary and Outlook

Image registration is now commonly accepted in clinical care
with improved outcomes in many surgical procedures, especially
for positioning patients in radiotherapy and orthopedic surgery.

Recently, registration of multimodal images revealed a trend
of shifting from extrinsic to intrinsic registration, because intrin-
sic methods do not require additional fiduciary markers to be
introduced to the skin or body of the patients. Although there
is an increasing number of studies in deformable or nonlinear
registrations, global rigid registration is still the most frequently
used registration approach in clinical procedures. The intensity-
based methods, relying only on pixel values without the need for
detection of special landmarks, have also entered the main-
streams of registration research in multimodal applications.

For developing ML-based registrations, there is an emerging
need for public databases of representative, expert-annotated
images, especially for analyzing the intraoperative cardiovascular
images that are typically low resolution and low contrast. The reg-
istration of images in cardiology is currently conducted on a case-
by-case basis. In comparison, other applications such as image
registration for neuronal surgeries and radiotherapies have
started to build and use the public atlas of representative images,
which significantly accelerate the research in these areas.[190,191]

Validation of methods and results, in particular for nonlinear
registrations, remains to be a major challenge in applications of
image-guided procedures.[192] One major reason is that many
image-guided applications do not have well-defined standards
and the validation of coregistration algorithms and results mainly
depends on the individual judgment of the involved clinicians or
physicians. Another reason is the lack of quantification protocols
and well-established methods for measuring the local registra-
tion errors with absolute certainty. The existing evaluation of reg-
istration-used computer simulations or physical phantoms is of
very limited value, because of the infeasibility of including the
overwhelmingly rich variety of anatomic and pathologic features.
Many studies focus their algorithms on specific regions of inter-
est, so it is difficult to extend these registration algorithms to
other anatomical areas. Future research efforts should focus
on overcoming these limitations and providing more universal
solutions. To solve the validation challenge, future research
may investigate the use of additional assessment systems to mea-
sure the aligned features or key points. These additional assess-
ment systems can be either a third-image modality that can
clearly reveal the ground truth or an electromagnetic tracking
system when electromagnetic sensors are used extrinsically.

Nonrigid registration provides a more accurate model of
human anatomy than rigid registration. This is especially true
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for areas of soft tissue where intraoperative deformation may
occur. Thus, suitable evaluation metrics should be standardized
for nonrigid registration algorithms. Available studies have
shown difficulty in standardizing reliable validation protocols.
Current methods either use real patient image data or phantom
image data as a reference for deformable registration. Phantom
data can be useful, but the difficulty in creating phantom data
that represent all anatomical deformations is very resource heavy
and not practical in clinical environments. In addition, phantom
data display uniform intensities in areas that patient data would
display gradients. So far, the suitability of specific evaluationmet-
rics for deformable registrations is reliant upon the specific clin-
ical situation.[175] It appears that investment in a large scale and a
long-term study that includes a large number of varying clinical
cases will be necessary to standardize these metrics.

Despite the significant progress in developing new algorithms,
registration and visualization are still quite separate topics.[193] At
present, not many registration approaches are integrated with
state-of-the-art visualization (e.g., 3D rendering of anatomical
structures and visualization on augmented reality or virtual reality
(AR/VR) devices). Meanwhile, not many visualization approaches
are combined with image registration to utilize the registered
results.[194] In future, the combination of medical registration
and new visualization technology is anticipated to provide an inte-
grated solution for enhanced visualization in the medical field.

Functional imaging modalities provide valuable clinical infor-
mation that structural imaging cannot distinguish. Although it
has been studied, image registration would benefit from additional
research focused on registering functional and structural modali-
ties. To achieve this, software standards should be implemented so
that researchers can collaborate and expand upon existing innova-
tions. There are many open-source software options currently
available for medical image registration. For example, Insight seg-
mentation and registration ToolKit (ITK) is an open-source cross-
platform system that provides registration functions in two, three,
and more dimensions. Based on ITK, Klein et al. further devel-
oped elastix software, which incorporates several optimization
methods, multiresolution schemes, interpolators, transformation
models, and cost functions.[195] Similarly, the advanced normali-
zation tools (ANTs) package is also based on ITK and commonly
used in brain image analysis for managing, interpreting, and reg-
istering multimodal and multidimensional image data. NiftyReg,
which is developed by Translational Imaging Group at University
College London, provides various methods for rigid, affine, and
nonlinear registration, as well as GPU- and CPU-based implemen-
tation. Additionally, Graphical Interface for Medical Image
Analysis and Simulation (GIMIAS) provides functionalities for
manual and automatic segmentation, visualization, andmesh edit-
ing. An extended list of commercially available software and open-
source toolboxes can be found in the literature[196,197] and on the
Neuroimaging Informatics Tools and Resources Collaboratory
webpage.[198]

6. Conclusions

Image registration has remained an important topic of research
interest, especially as advances have been made in clinical appli-
cations. Each part of the image registration workflow has shown

improvement, including registration algorithms, computing
capabilities, and even the imaging modalities themselves.
Whereas many applications of image registration have become
standard practice in certain clinical areas, many new develop-
ments are still in the early stages and are yet to become the
standard of care. Minimally invasive procedures and more objec-
tive clinical measures are becoming more popular in developing
newmethods. Medical image registration will witness an increas-
ing use in the area of advanced medical imaging, as the fusion/
combination of multimodal images and advanced visualization
technology (AR/VR) becomes more widespread. The capabilities
of image registration have expanded significantly, and patient
care will be greatly improved as more of these technologies
are adopted into standard clinical procedures.
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