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A B S T R A C T

Assembly accuracy of aeroengines influences operation performance and service life. The coaxiality of the
aeroengine is the main index of assembly accuracy and is also a core index to represent assembly quality.
However, direct measurement of coaxiality is a difficult technical problem due to the sealed structure of the
aeroengine casing system. A coaxiality prediction method is proposed to obtain coaxiality and assist assembly
by geometric distribution error modeling and point cloud deep learning. The prediction process consists of
three steps. In the beginning, the geometric distribution error model is established to construct the accurate
dense point cloud of aeroengine part surfaces by the non-uniform rational B-splines (NURBS) method based
on the coordinate measuring machine collecting information. Then, the mapping between the dense point
cloud and coaxiality is established to obtain an assembly dataset by the virtual assembly. Finally, the dataset
is fed to a new point cloud deep learning backbone, Self-channel cross attention point network, and realizes
end-to-end coaxiality prediction based on the aeroengine surface point cloud. The geometric distribution error
model is tested on the aeroengine simulated parts with 0.001 mm accuracy. The prediction method is verified
on the aeroengine simulated parts and compared with other point cloud deep learning baselines. The method
proposed in this paper realizes 93.17% prediction accuracy with 0.01 mm coaxiality precision which is a high
performance and meets the requirements of industrial measurement. This paper provides an effective coaxiality
prediction model for the aeroengine casing system, to improve the accuracy and efficiency of the aeroengine
assembly.
1. Introduction

As a core geometric accuracy of aeroengine, coaxiality is closely
related to vibration, dynamic imbalance, failure, etc. which directly
affect operational reliability, product quality, and product life [1,2].
However, the coaxiality of multiple-bearing mounting holes is dif-
ficult to directly measure due to the complex and closed structure
of the casing system. Therefore, the coaxiality of most aeroengines
is obtained by the accuracy prediction method, as shown in Fig. 1.
The difficult problem of high-accuracy coaxiality prediction seriously
restricts product quality and assembly efficiency [3,4]. The core of the
coaxiality prediction method is to establish a model that maps between
measurable geometric distribution error of parts and unmeasurable
coaxiality error of casing system. In recent years, many scholars have
studied assembly accuracy prediction methods from two main aspects:
error modeling and virtual assembly.
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Geometric errors including form, orientation, location, and run-
out were also considered in aeroengine assembly accuracy prediction
methods. However, the geometric errors defined by ISO standards
cannot comprehensively represent the non-uniform distributed micro-
scopic error on surfaces Therefore, geometric distributed error (GDE)
is proposed to represent the non-uniform distributed microscopic error
in accurate digital twin modeling of precision microstructures [5]. The
GDE modeling method is considered a basic problem of the aeroengine
assembly accuracy prediction method in this paper. Zuo et al. [6]
considered the influence of plane form error in the contact state of
mating surfaces. Many scholars [7,8] established models of manu-
facturing error and deformation by the least square method and the
random sample consensus algorithm. Schleich et al. [9] proposed the
skin model to represent GDE and established models of manufacturing
and assembly errors through point clouds and surface meshes. Sun
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Fig. 1. The coaxiality error in aeroengines manufacture.
et al. [10] established the mathematical model of surface error by
wavelet transform. Li et al. [11–15] established geometric and physical
modeling of surface discontinuity features by high-definition metrol-
ogy. Other scholars [16–19] established the outline of turbine blades
based on non-uniform rational B-spline (NURBS) curves/surfaces.

However, there are many defects in the above studies. The meshed
skin model which is proposed to estimate surface shape changes during
the design, cannot comprehensively represent the error information
between adjacent points, and the smoothness of the skin model is
poor. Fitting methods such as wavelet transform and discrete cosine
transform cannot guarantee that the surface model passes through
every measurement point, so there is an irresolvable error between
measurement points and the fitted surface. Meanwhile, the local GDE
of the fitted surface is poorer than the interpolated surface. The NURBS
curves/surfaces are used to establish blade ideal profiles during the
design and tool trajectory planning. The influence of micro GDE on
assembly accuracy is ignored.

On the basis of error modeling, scholars have studied virtual as-
sembly methods to predict assembly accuracy. Dimensional chain cal-
culation which replaces geometric errors with deviations to transform
three-dimensional problems into one-dimensional problems, is one of
the most widely used traditional methods in production [20,21]. The
deviation propagation method and error propagation method based on
homogeneous transformation matrix (HTM) and Jacobian-Torsor are
often used in virtual assembly [7,22–24]. As an important part of the er-
ror propagation, the contact points calculation method directly affects
the assembly accuracy prediction. Scholars [10,25,26] used difference
surface method to obtain contact points and assembly position and
posture. Other scholars [27–29] used the iterative nearest point (ICP)
algorithm to obtain contact points and assembly position and posture.

However, there are many defects in the above studies. Dimensional
chain calculation and deviation propagation without considering GDE
cannot accurately predict coaxiality. For error propagation models
based on HTM, Jacobian-Torsor, difference surface method, and ICP
algorithm, the complex assembly structure contains a large number of
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specific model parameters so that it is difficult to model and tune, and
it consumes time modeling and labor cost.

To guarantee coaxiality prediction accuracy, when assembling each
pair of different surfaces, the engineer needs to adjust the model pa-
rameters according to the specific contact states. Each virtual assembly
prediction is a new modeling process, which requires a lot of labor costs
and computing power. Therefore, for the assembly accuracy prediction
system, a new method that can realize the direct mapping between
the point cloud and coaxiality is needed to eliminate the cumbersome
modeling process and to improve the generalization of the assembly
model.

Deep learning, a deep neural network with millions of parameters,
is good at constructing relationships between mass discrete data with
a single label [30]. The end-to-end prediction mode can effectively
replace the manual modeling process of the contact calculation method.
With the flourishing of point cloud acquisition equipment and com-
puting power, point cloud deep learning is used in various industrial
scenes, including robotics control [31], automation driving [32], and
remote sensing [33]. Benefiting from discovering intricate structures
in complex high-dimensional data [34], point cloud deep learning
succeeds in constructing the end-to-end relationship between point
cloud data and its physical meaning. The release of several public
datasets [35–38] further boosts the development of deep learning on
the point cloud. It derives the number of downstream tasks, including
3D shape classification [32], 3D point cloud segmentation [39], and 3D
object detection [40]. In this paper, assembly workpiece surface point
clouds are divided into groups according to the simulation calculation
results, and we define the coaxiality prediction problem as a point cloud
classification task.

Qi et al. [39] proposed PointNet, the geometric point-based deep
learning method paradigm, and unstructured data processing pioneer,
in 2017. Unlike the previous methods of converting point clouds into
images [41–44], PointNet directly feeds point clouds into the deep neu-
ral network. It will efficiently decrease the computational costs caused
by data processing and the calculation error caused by point cloud spar-
sity. To feed the unordered data format, PointNet proposed a symmetry
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Fig. 2. The precision assembly coaxiality prediction method.
function to aggregate local and global information. Specifically, multi-
layer perceptrons (MLPs) are used to sum up all point cloud poses and
achieve point cloud permutation invariance. Although PointNet realizes
the independent point cloud feeding, the ignorance of neighbor points’
local structure feature weakens the prediction accuracy. Therefore, Qi
et al. [45] added a hierarchical architecture to PointNet and proposed
PointNet++. The improvement can efficiently capture local geometric
structures and achieve feature extraction efficiently and robustly. Based
on these two backbones, DGCNN [46] considered each point as a vertex
of a graph and aggregates point adjacent edge features via a channel-
wise symmetric function. Inspired by the success of transformers in
natural language processing and computer vision, Zhao et, al. [47]
introduced the self-attention operator, the core of transformers, to
the point cloud neural network and proposed Point Transformer. This
architecture is remarkably effective in 3D point cloud processing and
outperforms PointNet ++ by a large margin in a variety of downstream
tasks. Nevertheless, PointNext [48] revisits the PointNet architecture
and conducts improved model training and scaling strategies. The
new architecture becomes the state-of-the-art (SOTA) method over
Point Transformer and illustrates that the simple MLP is still excellent
compared to other sophisticated modules.

Based on these works, a new point cloud deep learning network
is proposed, named Self-channel cross attention point network, for
effective point feature learning. It uses PointNet++ as a backbone
and leverages an inverted bottleneck to perfect training results. To
reinforce the information interaction between different feature maps,
a new attention mechanism, the self-channel cross attention module, is
proposed in this paper. In this module, self-attention and channel-wise
attention are mixed to guarantee the extraction of local feature and
global features.

In summary, there are still two problems with assembly accuracy
prediction. Firstly, the GDE is not accurately and comprehensively
considered in aeroengine assembly. Secondly, the current virtual assem-
bly process which considers the GDE of complex mechanical products
requires specific model tuning and calculation of different samples
which increases time and labor costs and causes poor generalization.
To end this, This paper proposes an end-to-end accurate assembly
coaxiality prediction method based on GDE models and point cloud
deep learning, as illustrated in Fig. 2. Firstly, the NURBS surface is used
to reconstruct dense point clouds for comprehensive GDE of surfaces
based on measured data; Secondly, the virtual assembly which maps
between GDE and coaxiality is used to establish an assembly dataset;
Thirdly, construct a point cloud deep learning network, establish a
mapping relationship between point cloud data and assembly accuracy
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after surface discretization, and establish an assembly accuracy pre-
diction model suitable for two surface assemblies with GDE; Finally,
the effectiveness of the accuracy prediction model was verified by
simulated aeroengine flange components as an example.

The rest of this paper is organized as follows. Section 2 introduces
the GDE model and the process of constructing the relationship between
the 3D point cloud and coaxiality. Section 3 illustrates the details of
the Self-channel cross attention point network. Section 4 presents the
experiment object and compares our method with other deep learning
baselines. Section 5 draws the conclusions.

2. Modeling of aeroengine casing system based on GDE

In this section, a GDE model is established to map between the mea-
surement point cloud and the reconstructed dense point cloud by the
NURBS method. This model accurately and comprehensively describes
the GDE of aeroengine surfaces. On this basis, a virtual assembly model
is established to map between the reconstructed dense point cloud and
the coaxiality of the aeroengine casing system by HTM and difference
surface method. The details of the models will be introduced in this
section.

2.1. Measurement for GDE of aeroengine casings

Currently, the ISO 1101:2017 standard is used to calculate and
evaluate geometric errors in the manufacturing industry. However,
there is a problem that sometimes parts with the same geometric error
evaluation value result in different assembly accuracy. And examples
are shown in Fig. 3. During precision assembly, it is necessary to
consider the impact of the micro GDE on the assembly accuracy.

To obtain the GDE data of aeroengines, the coordinate measur-
ing machine (CMM) is selected as the primary measuring instrument
in manufacturing. The initial point cloud is measured by CMM in
this paper. However, the measurement efficiency of CMM is low, the
measurement point cloud is sparse, and the error information of the
measurement point cloud is not comprehensive. So, the dense point
cloud which describes comprehensive geometrically distributed error
is reconstructed in Section 2.2 by the NURBS method.

2.2. GDE modeling based on NURBS surface model

The NURBS method is a three-dimensional interpolation model in
computer graphics. The most prominent advantage of NURBS surfaces

is they can accurately and uniquely represent a free-form surface
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Fig. 3. Different assembly errors with the same tolerance zone.
Fig. 4. NURBS surface interpolation.
based on a unified mathematical form. The bicubic NURBS surface
also has good locality and C2 continuity, which can accurately and
comprehensively describe the micro GDE.

The NURBS method is used to predict GDE and upsample the
measurement point cloud to obtain the dense point cloud. The dense
point cloud can describe the comprehensive geometrically distributed
error and provide a reliable data foundation for the assembly accuracy
prediction model.

A NURBS surface with p degree in the u direction and q degree in
the v direction is defined as Eq. (1).

𝑆(𝑢, 𝑣) =

∑𝑚
𝑖=0

∑𝑛
𝑗=0 𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑞(𝑣)𝑤𝑖,𝑗𝑃𝑖,𝑗

∑𝑚
𝑖=0

∑𝑛
𝑗=0 𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑞(𝑣)𝑤𝑖,𝑗

=
𝑚
∑

𝑖=0

𝑛
∑

𝑗=0
𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑞(𝑣)𝑃𝑤

𝑖,𝑗 , 0 ⩽ 𝑢, 𝑣 ⩽ 1
(1)

Where, u and v represent knot parameters, 𝑆(𝑢, 𝑣) = [𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣),
𝑧(𝑢, 𝑣)] represents the point on NURBS surface, 𝑁 (𝑢) and 𝑁 (𝑣)
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𝑖,𝑝 𝑗,𝑞
defined by the De Boor-Cox recursion formula [49] represent basis func-
tions which determined by the knot vectors U and V . 𝑤𝑖,𝑗 represents
the control point weight factor. 𝑃𝑖,𝑗 represents the surface control point,
𝑃𝑤
𝑖,𝑗 represents the surface weighted control point.

For NURBS surface interpolation based on the measurement point
cloud, the interpolation equation is assumed as Eq. (2).

𝑄𝑘,𝑙 = 𝑆(�̄�𝑘, �̄�𝑙) =
𝑚
∑

𝑖=0

𝑛
∑

𝑗=0
𝑅𝑖,𝑝(�̄�𝑘)𝑅𝑗,𝑞(�̄�𝑙)𝑃𝑖,𝑗 (2)

Where, 𝑄𝑘,𝑙 = [𝑥(�̄�𝑘, �̄�𝑙), 𝑦(�̄�𝑘, �̄�𝑙), 𝑧(�̄�𝑘, �̄�𝑙)], (𝑘 = 0, 1, … , 𝑚; 𝑙 =
0, 1,… , 𝑛) represents the known (𝑚+1)× (𝑛+1) topological rectangular
mesh measurement point cloud. 𝑃𝑖,𝑗 represent unknown topological
rectangular mesh control point cloud. As shown in Eq. (3), the cumu-
lative chord length parameterization is used to calculate �̄�𝑘 and �̄�𝑙 to
assign a pair of knot parameter values to each measurement point.

⎧

⎪

⎨

⎪

�̄�𝑘 = 1
(𝑛+1)

∑𝑛
𝑙=0 �̄�

𝑙
𝑘 𝑘 = 0, 1,… , 𝑚

�̄�𝑙 =
1 ∑𝑚

𝑘=0 �̄�
𝑘 𝑙 = 0, 1,… , 𝑛

(3)
⎩

(𝑚+1) 𝑙
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Fig. 5. NURBS modeling and GDE reconstruction.
As shown in Eq. (4), knot vector U is calculated by average
technique [49] based on �̄�𝑘 . The calculation method for V is the same
as for U .
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑢0 = ⋯ = 𝑢𝑝 = 0

𝑢𝑚−𝑝 = ⋯ = 𝑢𝑚 = 1

𝑢𝑗+𝑝 =
1
𝑝
∑𝑗+𝑝−1

𝑖=𝑗 �̄�𝑖 , 𝑖 = 1, 2,… , 𝑚 − 𝑝

𝑼 = (0, 0,… , 0,
⏟⏞⏞⏟⏞⏞⏟

𝑝+1

𝑢𝑝+1,… , 𝑢𝑚−𝑝−1, 1, 1,… , 1,
⏟⏞⏞⏟⏞⏞⏟

𝑝+1

)

(4)

NURBS surface is a tensor product surface. So, Eq. (2) can be
rewritten Eq. (5).

𝑄𝑘,𝑙 =
𝑚
∑

𝑖=0

[ 𝑛
∑

𝑗=0
𝑃𝑖,𝑗𝑅𝑗,𝑞(�̄�𝑙)

]

𝑅𝑖,𝑝(�̄�𝑘)

=
𝑚
∑

𝑖=0
𝐶𝑖,𝑙(�̄�𝑙)𝑅𝑖,𝑝(�̄�𝑘)

(5)

Where, 𝐶𝑖,𝑙 represents control points of the isoparametric curve on
NURBS surface at fixed 𝑣 = �̄�𝑙. All 𝐶𝑖,𝑙 form intermediate control
points of the NURBS surface. 𝐶𝑖,𝑙(�̄�𝑙) =

∑𝑛
𝑗=0 𝑃𝑖,𝑗𝑅𝑗,𝑞(�̄�𝑙) is a series of

equations for interpolation with intermediate control points at fixed i
and changing l.

Therefore, the calculation of surface control points 𝑃𝑖,𝑗 can be
described as the following:

(1) In the u direction, do n+1 curve interpolations through {𝑄0,𝑙 ,
𝑄1,𝑙 ,… , 𝑄𝑚,𝑙}(𝑓𝑜𝑟 𝑙 = 0, 1,… , 𝑛) based on U and �̄�𝑘. And intermediate
control points 𝐶𝑖,𝑙 are calculated, as shown in Fig. 4(b);

(2) In the v direction, do m+1 curve interpolations through {𝐶𝑖,0,
𝐶𝑖,1,… , 𝐶𝑖,𝑛}(𝑓𝑜𝑟 𝑖 = 0, 1,… , 𝑚) based on V and �̄�𝑙. And control points
of surface 𝑃𝑖,𝑗 are calculated, as shown in Fig. 4(c);

The GDE can be represented as a NURBS surface model, as shown
in Fig. 4(d).

GDE models of three surfaces on a simplified aeroengine casing
system are established, as shown in Fig. 5. And the GDE is amplified
and displayed. Then, dense point clouds are calculated with �̄�, �̄� based
on the NURBS surface.

In summary, the GDE model is established based on the NURBS
method. The micro GDE is comprehensively and accurately recon-
structed as the dense point cloud. And, the accuracy of the GDE model
685
Fig. 6. Coordinate systems and HTM.

is verified within 0.001 mm accuracy on the aeroengine simulated parts
in Section 4.2.

2.3. Virtual assembly based on the GDE model

Virtual assembly is the method of constraining the digital model of
a product and simulating the actual assembly process. In this paper,
virtual assembly refers specifically to assembly accuracy prediction
modeling by unifying all aeroengine casing parts, geometrical features,
and dense point clouds of GDEs in one assembly reference coordinate
system (RCS) and calculating assembly accuracy.

To represent the assembly position and posture, the part coordinate
system (PCS) is used to describe the aeroengine casing part, the feature
coordinate system (FCS) is used to describe the surface, and the assem-
bly motion coordinate system (MCS) is used to describe the assembly
error caused by contact. As shown in Fig. 6, in RCS, the position and
posture of Part 1 are described by PCS1 the position and posture of the
bearing mounting hole and flange surface on Part 1 are described by
FCS1𝐵 and FCS1𝑅 and the assembly error caused by the contact of Part
1 and Part 2 is described by MCS .
12
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𝐇 = 𝑇 𝑟𝑎𝑛𝑠(𝑥, 𝑎)𝑇 𝑟𝑎𝑛𝑠(𝑦, 𝑏)𝑇 𝑟𝑎𝑛𝑠(𝑧, 𝑐)𝑅𝑜𝑡(𝑥, 𝜃𝑥)𝑅𝑜𝑡(𝑦, 𝜃𝑦)𝑅𝑜𝑡(𝑧, 𝜃𝑧)

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑐𝑜𝑠𝜃𝑦𝑐𝑜𝑠𝜃𝑧 −𝑐𝑜𝑠𝜃𝑦𝑠𝑖𝑛𝜃𝑧 𝑠𝑖𝑛𝜃𝑦 𝑎
𝑠𝑖𝑛𝜃𝑥𝑠𝑖𝑛𝜃𝑦𝑐𝑜𝑠𝜃𝑧 + 𝑐𝑜𝑠𝜃𝑥𝑠𝑖𝑛𝜃𝑧 −𝑠𝑖𝑛𝜃𝑥𝑠𝑖𝑛𝜃𝑦𝑠𝑖𝑛𝜃𝑧 + 𝑐𝑜𝑠𝜃𝑥𝑐𝑜𝑠𝜃𝜃𝑧 −𝑠𝑖𝑛𝜃𝑥𝑐𝑜𝑠𝜃𝑦 𝑏
−𝑐𝑜𝑠𝜃𝑥𝑠𝑖𝑛𝜃𝑦𝑐𝑜𝑠𝜃𝑧 + 𝑠𝑖𝑛𝜃𝑥𝑠𝑖𝑛𝜃𝑧 𝑐𝑜𝑠𝜃𝑥𝑠𝑖𝑛𝜃𝑦𝑠𝑖𝑛𝜃𝑧 + 𝑠𝑖𝑛𝜃𝑥𝑐𝑜𝑠𝜃𝑧 𝑐𝑜𝑠𝜃𝑥𝑐𝑜𝑠𝜃𝑦 𝑐

0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

(6)

Box I.
HTM is used to describe the spatial relationship between rigid
bodies in robot kinematics [50]. In this paper, HTM is used to describe
the change of position and posture in virtual assembly. The rigid body
motion in virtual assembly includes parts motion, surface motion fol-
lowing parts motion, micro translation and rotation caused by contact,
etc. For example, 1𝑅

2𝐴𝐇 represents the HTM from FCS1𝑅 of surface 1R
on Part 1 to FCS2𝐴 of surface 2A on Part 2, as shown in Fig. 6. If a
coordinate system first translates a, b, c along x, y, z axes, and then
rotates 𝜃𝑥, 𝜃𝑦, 𝜃𝑧 around x, y, and z axes (see Box I), is represented as
Eq. (6).

An error propagation model for virtual assembly is established
shown in Eq. (7).
𝑅
2𝑅𝐇 =𝑅

1 𝐇1
1𝑅𝐇

1𝑅
2𝐴𝐇

2𝐴
2 𝐇2

2𝑅𝐇 (7)

Where, 𝑅
2𝑅𝐇 represents the position and posture of FCS2𝑅 in RCS.

𝑅
1 𝐇, 1

1𝑅𝐇, 2𝐴
2 𝐇, and 2

2𝑅𝐇 can be obtained based on design or measured
dimensions of aeroengine casings. And, 1𝑅

2𝐴𝐇 can be obtained based on
the difference surface method.

As shown in Fig. 7, a difference surface point cloud and a zero point
cloud are established based on the Surface 1R point cloud as a reference
point cloud and the Surface 2A point cloud as an assembly point cloud.
Then three contact points and 1𝑅

2𝐴𝐇 are calculated. At last, the contacted
point cloud which represents the Surface 2A point cloud after assembly
can be calculated based on 1𝑅

2𝐴𝐇 and the assembly point.
Considering the geometric structure and assembly process of aero-

engine casings, there are 6 principles and constraints of contact point
calculation:

(1) Rigid body assumption. No deformation of parts during virtual
assembly.

(2) Non-interference principle. No interference between contact
surfaces.

(3) Three contact points assumption. Based on (1) and (2), there are
three contact points between two contact surfaces.

(4) The constraints degrees of freedom. The translational degrees
of freedom of X and Y are 0 because aeroengine casings have rabbet
or dowel pins positioning. The rotational freedom of Z is 0 because of
the alignment of the through-hole of the upper flange and the threaded
hole of the lower flange during assembly.

(5) Center of gravity stability principle. The triangle formed by three
contact points projected on the reference plane must include the center
of gravity of the part.

(6) Disturbance stability principle. Based on (5), the three line
segments were obtained by connecting the three contact points with the
center of gravity. When the minimum angle approaches 0◦, it becomes
unstable after receiving external force disturbance. When all three an-
gles are 120◦, it is most stable after being disturbed by external forces.
The contact point calculation results must ensure that the minimum
angle is greater than 15◦ in this paper.

As shown in Fig. 7, there is a point P on the Surface 2R. The known
coordinate value of P in FCS2𝑅 is 2𝑅

𝑃 𝑣(𝑥2𝑅, 𝑦2𝑅, 𝑧2𝑅, 1), and the unknown
coordinate value of P in RCS is 𝑅

𝑃 𝑣(𝑥𝑅, 𝑦𝑅, 𝑧𝑅, 1).
𝑅
𝑃 𝑣(𝑥𝑅, 𝑦𝑅, 𝑧𝑅, 1) can be

calculated according to Eqs. (7) and (8).
𝑅𝑣 =𝑅 𝐇2𝑅𝑣 (8)
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𝑃 2𝑅 𝑃
Fig. 7. Difference surface method.

By using the same method, the position and posture of any point,
face, and part in RCS can be obtained. Any geometric accuracy such as
coaxiality, runout, parallelism, perpendicularity, etc. can be obtained.

In summary, this section establishes the GDE model which maps
between the measurement point cloud and the reconstructed dense
point cloud by the NURBS method. The GDE model can accurately and
comprehensively describe the GDE of aeroengine surfaces. This section
also establishes the virtual assembly model which maps between the
reconstructed dense point cloud and the coaxiality of the aeroengine
casing system by HTM and difference surface method. The virtual
assembly model is used to obtain the assembly dataset.

3. Coaxiality prediction based on point cloud deep learning

Based on part error models, the coaxiality of different workpiece
assemblies can be calculated. However, it is still time-consuming and
requires experienced engineers to construct virtual assembly models.
To save modeling costs, point cloud deep learning is used to construct
the relationship between object surface point cloud and coaxiality. The
large amounts of point cloud data and the matching labels are fed to
the point cloud neural network, and the end-to-end coaxiality calcu-
lation is realized. To accurately predict coaxiality, a new point cloud
deep learning architecture Self-channel cross attention point network
(SCCAPNet) is proposed. The details of this model are introduced in
this section.

3.1. SCCAPNet overview

The overall architecture of SCCAPNet is illustrated in Fig. 8. The
method proposed in this paper constructs a projection relationship
between the assembled surface point cloud P and the coaxiality  of
assembly results, where 𝑃 = {𝑝𝑖 ∈ R3, 𝑖 = 1, 2,… , 𝑁} is a collection of
three-dimensional arrays with N elements. The N presents the number
of points are used for neural network training in a set of assembled
surface point cloud and each element 𝑝𝑖 records the 3D coordinates
(𝑥𝑖, 𝑦𝑖, 𝑧𝑖). Following the point cloud deep leaning diagram [39,45,48],
the coordination feature size is increased from 3 to 32 by leveraging
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Fig. 8. SCCAPNet architecture.
a stem shared MLP (S MLP). After the receptive field expands, the
feature map is rescaled four times, corresponding to the four stages.
The number dimension N is narrowed down to one in sixteen while
the coordinate dimension is expanded sixteen times. For the feature
extraction process, the Set Abstraction layer is designed to construct
global relations between different points, and a point coordinate block
is applied to learn sample features. To reinforce the feature interaction
of different dimensions, a self-channel cross attention module is intro-
duced and stacked to each point coordinator block at every training
stage.

After all the feature extraction is finished, a symmetry layer is used
to solve the point cloud unordered input. The SSCAPNet can get the
same prediction results with different point input orders, which can
reduce the dataset construction costs. The symmetry function is shown
in Eq. (9).

𝑒({𝑝1, 𝑝2,… , 𝑝𝑖})

≈ 𝑠(𝑆𝑆𝐶𝐴𝑃 (𝑝1), 𝑆𝑆𝐶𝐴𝑃 (𝑝2),… , 𝑆𝑆𝐶𝐴𝑃 (𝑝𝑖))
(9)

Where e represents the ideal end-to-end training process, which
transposes the input point cloud to the prediction label directly. SSCAP
is the main backbone of the network architecture, and s is the symmetry
layer. The symmetry layer is constructed by a max pooling layer in this
paper and compresses the feature map to a 512-long vector. To link
with the classifier, the vector is fed to three fully connected (FC) layers
defined as (256, 128, ). The normalization layer and dropout layer are
implemented between these layers to speed up the training process and
prevent gradient vanishing. The classifier is equipped with a sigmoid
function and cross-entropy as a loss function.

3.2. Set abstraction layer and point coordinate block

Empirically, the receptive field size and neural network perfor-
mance present a strong positive correlation, which also is confirmed
in the field of point cloud deep learning [51]. Based on this principle,
the receptive field is doubled in the downsampling process via the Set
Abstraction layer and point coordinate block.

The Set Abstraction layer is applied to construct the global rela-
tionship between neighbor point clouds. It contains three key pro-
cesses: sampling, grouping, and feature map expansion. The sampling
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layer confirms several centroid points and reshapes the input features:
R𝐵∗𝑁∗𝐶 𝑙

→ R𝐵∗𝑁 ′∗𝐶 𝑙 , 𝑁 ′ ∈ [1, 𝑁], where 𝐶 𝑙 means the size of the
coordinates feature in the 𝑙𝑡ℎ set abstraction layer. To maintain the
original shape and ensure better coverage of the entire point set [52],
the Furthest Point sampling algorithm is introduced [45]. After down-
sampling, the grouping layer queries neighbors for each point 𝑁 ′. The
grouping radius ‘r ’ is set to 0.8 and the number of points calculated in
the radius ‘K ’ is set to half of the last channel in this task. The grouping
layer adds a dimension to the input feature: R𝐵∗𝑁∗𝐶 𝑙

→ R𝐵∗𝑁 ′∗𝐾∗𝐶 𝑙 . In
the end, a combination of shared MLP and reduction layer is used for
feature map expansion. Each grouping point cloud set is constructed
local frame relative to the sampling center point: 𝑝ℎ𝑗 = �̂�ℎ𝑗 − 𝑝𝑗 , ℎ ∈
[1, 𝐾], 𝑗 ∈ [1, 𝑁 ′], where 𝑝𝑗 is the centroid point determined by the
sampling layer and �̂�ℎ𝑗 is the original coordinate of grouping results.
The shared MLP doubles the receptive field while the reduction layer
aggregates the neighbor points relationship and guarantees the feature
shape translating to three dimensions.

Similar to the Set Abstraction layer, the stem of the point coordinate
block is an alignment of grouping, shared MLP, and reduction layer.
Different from the former, the centroid point was not downsampled,
due to the finite number of training points, especially in the fourth
stage. Thus, the stem normalization process can be written as Eq. (10):

 𝑙+1
𝑖 = (𝑗,ℎ)∶𝑗∈𝑁 ′ ,ℎ∈𝐾

{

𝑠
[

 𝑙
𝑗 ; �̂�

ℎ𝑙
𝑗 − 𝑑(𝑝𝑙𝑖)

]}

(10)

Where 𝑝𝑙𝑖 is the input point clouds used for 𝑙𝑡ℎ layer. Function d is
the downsampling process of the sampling layer and s is the shared
MLP layer, which are illustrated in Section 3.1. �̂�ℎ𝑙𝑗 −𝑑(𝑝𝑙𝑖) is relevant to
the local frame construction and  𝑙

𝑗 is the output of the set abstraction
layer.  is the reduction layer and reinforces the connection between
centroid point 𝑑(𝑝𝑙𝑖) and its neighbors �̂�ℎ𝑙𝑗 , defined as (𝑗, ℎ) ∶ 𝑗 ∈ 𝑁 ′, ℎ ∈
𝐾. Inspired by the ConvNext [53], the SOTA method of computer
vision, the inverted bottleneck [54,55] is applied to shared MLP in
each stage for coordinate-wise information interaction and effective
model scaling. In the inverted bottleneck, the coordinates dimension
is expanded and compressed for F times (𝐶 → 𝐶𝐹 → 𝐶) via shared
MLP layers. F is set to two in this work, and add a residual connection
to prevent vanishing gradient caused by the network depth increasing.
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Fig. 9. Self-channel cross attention module.
To better leverage the long-range context dependencies among points,
a self-channel cross attention module is introduced after an inverted
bottleneck. After attention mechanisms, the feature map is fed to the
drop path layer to prevent network overfitting. The dropped features
are fused with the skip link and transported to the next stage for
another sampling.

3.3. Self-channel cross attention module

The connection between neighbor point clouds sampled in radius r
is effectively built based on the grouping layer. However, the sampling
method loses spatial dependencies among global points, containing
rich geometrical information. The attention mechanism reinforces the
network global information-capturing ability via expanding broader
dependencies of input features, which improves training performance.
Additionally, the attention mechanism is based on MLP achieved matrix
multiplication, fitting the points cloud solving requirement of transfor-
mation invariance. To better correlate between different point clouds
feature dimensions, this paper hybridizes disparate dimension atten-
tion and proposes a new architecture, the self-channel cross attention
module.

The overview of the cross attention module is shown in Fig. 9.
As for an input point cloud feature (R𝐵×𝑁×𝐶 ), traditional attention
mechanisms [56,57] only focus on one dimension. Different previous
work, cross attention is a hybrid module mixing feature map from two
feature dimensions. As for the coordinates dimension, the feature map
is fed to the upper branch. In order to make full use of the global spatial
information, both the mean and standard deviation (STD) of the input
feature are leveraged at the same time. The two-norm is used to mix
the mean feature and STD feature to make sure different features are
preserved and fused. The process is shown in Eq. (11).

⎧

⎪

⎪

⎨

⎪

⎪

𝜇𝑑 = 1
𝑁×𝐵

∑𝑁
𝑛=1

∑𝐵
𝑏=1 𝑓

𝑑
𝑛×𝑏

𝜎𝑑 =
√

1
𝑁×𝐵

∑𝑁
𝑛=1

∑𝐵
𝑏=1(𝑓

𝑑
𝑛×𝑏 − 𝜇𝑑 )2

𝑁𝑜𝑟𝑚 =
√

𝜇2 + 𝜎2

(11)
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⎩
𝑑 𝑑 𝑑
Where 𝑓 𝑑
𝑛×𝑏 is the 𝑑𝑡ℎ feature map with shape 𝑁×𝐵 and 𝜇𝑑 , 𝑑 ∈ [1, 𝐶]

is the mean value of 𝑓 𝑑
𝑛×𝑏 realized by average pooling. 𝜎𝑑 represents

the STD of the same feature map. To combine these two, the two-norm
(𝑁𝑜𝑟𝑚𝑑) is introduced as Eq. (11). The feature size of 𝑁𝑜𝑟𝑚𝑑 is the
same as the mean and STD value, equal to R1×1×𝐶 and is transported to
a combination of two fully connected layers. In contrast to the design of
an inverted bottleneck, the fully connected layers compress the vector
F times (from C to C/F ) and expand it to the original size. F is set to
two to correspond to the downsampling ratio in the main stage. Before
the shortcut connection, the feature map is passed through a batch
norm layer and a sigmoid function. In the upper branch, a feature map
reinforced information interaction in 𝑁 × 𝐵 dimension is obtained.

In the lower branch, the feature map is separated into three paths.
And the query, key, and value are calculated by feature transforma-
tions. The calculation process is denoted as Eq. (12).

 𝑙+1
𝑄,𝐾,𝑉 =  𝑙 ×𝑊 𝑙

𝑄,𝐾,𝑉 (12)

The  𝑙 is the feature map in the 𝑙𝑡ℎ layer and 𝑊 𝑙
𝑄,𝐾,𝑉 is the

correlated weight of three paths, where 𝑊 𝑙
𝑄 ∈ R𝐶×𝐶𝑄 , 𝑊 𝑙

𝐾 ∈ R𝐶×𝐶𝐾 ,
and 𝑊 𝑙

𝑉 ∈ R𝐶×𝐶𝑉 . To reduce computation cost and balance the down-
sampling rate with the upper branch, 𝐶𝑄 = 𝐶𝐾 = 𝐶∕𝐹 and 𝐶𝑉 = 𝐶 are
defined in this work. The equation of the attention result  𝑙+1

𝑙𝑜𝑤 in the
lower branch is defined as Eq. (13).

 𝑙+1
𝑙𝑜𝑤 = 𝛼

[

 𝑙+1
𝑄 × ( 𝑙+1

𝐾 )𝑇 ∕
√

𝐶∕𝐹
]

×  𝑙+1
𝑉 (13)

In the beginning, query  𝑙+1
𝑄 performs matrix multiplication with

the transpose of key  𝑙+1
𝐾 . The result is normalized by the square root

of the coordinates dimension 𝐶∕𝐹 . Then the feature map is dealt with
an activation function 𝛼, and the sigmoid function is chosen. Lastly, the
outputs multiply with the value  𝑙+1

𝑉 , and the attention feature map of
𝑁 ×𝐵 dimension is obtained. After the dual attention architecture, the
self-channel cross attention module combines two previous attention
features with the input feature map via a shortcut. It finally mixes
the information from different dimensions and reinforces the global
information interaction.



Journal of Manufacturing Systems 71 (2023) 681–694K. Shang et al.
Fig. 10. Aeroengine simulated parts and data processing.

4. Experiment and analysis

In this section, a mapping dataset between aeroengine simulated
workpiece point clouds and coaxiality is established through GDE mod-
eling and the virtual assembly. The SCCAP net is tested in the dataset
and compared with other SOTA deep learning methods to demonstrate
the effectiveness of the approach proposed in this paper.

4.1. Data description

14 aeroengine simulated parts are designed and processed, as shown
in Fig. 10. Point clouds are measured with the Hexagon Leitz PMM-
XI12107 CMM. The measurement uncertainty of CMM is ±(0.5+L/500)
μm.

4.2. GDE modeling and accuracy verification

The accuracy verification of the NURBS model based on the mea-
surement point cloud is implemented in this section. Data processing
for accuracy verification is shown in Fig. 10. The measurement point
cloud is divided into two groups. Small points as modeling points are
edge extended and interpolated into NURBS surfaces. Large points as
verification points are not interpolated into NURBS surfaces. The model
accuracy is represented as the average distance between verification
points and the NURBS surface.

Dense point clouds are obtained by the NURBS method based on
modeling point clouds, as shown in Fig. 11. GDE of point clouds is
amplified and displayed.

Single-point distances between verification points and NURBS sur-
faces are calculated. The surface accuracy is represented as the average
of single-point distances, as shown in Table 1, Table 2, and Table 3. The
surface accuracy is 0.0009 mm, 0.0008 mm, and 0.0010 mm. The result
verifies the GDE model based on the NURBS surface can accurately
predict GDE.
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Fig. 11. GDE modeling and reconstruction.

Table 1
Accuracy of NURBS surface A (mm).

X Y Z Single point distance

3.4544 65.9087 0.0003 0.0014
−65.9094 3.4556 −0.0089 0.0001
−3.4540 −65.9088 0.0088 0.0002
65.9093 −3.4553 −0.0171 0.0000
3.6639 69.9039 0.0060 0.0004
−69.9039 3.6636 −0.0058 0.0017
−3.6634 −69.9037 0.0142 0.0021
69.9041 −3.6638 −0.0126 0.0018
3.8731 73.8983 −0.0127 0.0000
−73.8986 3.8729 −0.0003 0.0000
−3.8727 −73.8986 −0.0237 0.0003
73.8987 −3.8729 0.0040 0.0026

Flatness 0.0379 Average 0.0009

Table 2
Accuracy of NURBS Surface B (mm).

X Y Z Single point distance

2.8790 65.9371 0.0034 0.0000
−65.9370 2.8789 −0.0053 0.0002
−2.8787 −65.9373 0.0051 0.0006
65.9374 −2.8792 −0.0049 0.0010
3.0534 69.9333 0.0050 0.0000
−69.9333 3.0532 −0.0048 0.0007
−3.0532 −69.9337 0.0058 0.0005
69.9333 −3.0536 −0.0051 0.0005
3.2279 73.9294 0.0057 0.0002
−73.9295 3.2278 −0.0037 0.0013
−3.2277 −73.9297 0.0068 0.0011
73.9295 −3.2282 −0.0045 0.0034

Flatness 0.0150 Average 0.0008

4.3. Virtual assembly and data augmentation

The dataset of dense point clouds is augmented for the deep learning
model. The methods for data augmentation include weight combina-
tion, rotation, function addition, error scaling, mirroring, noise signal
addition, filtering, etc.

14 flange surface dense point clouds are augmented into 1600 point
clouds. As shown in Fig. 12, dense point clouds of Surface A and Surface
Band are augmented into 9 sets of point clouds.
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Table 3
Accuracy of NURBS Surface C (mm).

X Y Z Single point distance

45.2393 45.2371 1.9991 0.0009
−61.8124 16.5631 2.0001 0.0010
16.5525 −61.7763 1.9996 0.0013
45.2392 45.2381 4.0008 0.0015
−61.8123 16.5629 4.0002 0.0003
16.5524 −61.7769 4.0003 0.0012

Cylindricity 0.0373 Average 0.0010

Fig. 12. Point clouds extension.

An example of virtual assembly is implemented in this section. The
GDE model and error propagation of aeroengine simulated parts is
shown in Fig. 13, and the GDE of CAD solid models is amplified and
displayed. The coaxiality D12 of Part 2, which is based on the Part 1
position reference, is defined as twice the projection distance on the
XOY plane in RCS between the origin of FCS1𝐶 and the origin of FCS2𝐶 .
To obtain 𝑅

1𝐶𝐇 of FCS1𝐶 . and 𝑅
2𝐶𝐇 of FCS2𝐶 , Part 1 is selected as the

assembly reference part, and the error propagation equation is defined
as Eqs. (14) and (15).

𝑅
1𝐶𝐇 =𝑅

1 𝐇1
1𝐶𝐇 (14)

𝑅
2𝐶𝐇 =𝑅

1 𝐇1
1𝑅𝐇

1𝑅
2𝐴𝐇

2𝐴
2 𝐇2

2𝐶𝐇 (15)

The HTM between overlapping coordinate systems is the identity
matrix I. Therefore, 𝑅

1 𝐇 =1
1𝑅 𝐇 =2𝐴

2 𝐇 = 𝐈. As shown in Fig. 13, the
design dimension contains ℎ1 =60 mm and ℎ2 =40 mm, so 1

1𝐶𝐇 =
𝑇 𝑟𝑎𝑛𝑠(𝑧,−60) and 2

2𝐶𝐇 = 𝑇 𝑟𝑎𝑛𝑠(𝑧, 40). 1𝑅
2𝐴𝐇 is obtained by the difference

surface method in Section 2.2. Eqs. (14) and (15) can be rewritten as
Eqs. (16) and (17).

𝑅
1𝐶𝐇 =𝑅

1 𝐇1
1𝐶𝐇 = 𝑇 𝑟𝑎𝑛𝑠(𝑧,−60) =

⎡

⎢

⎢

⎢

⎢

1 0 0 0
0 1 0 0
0 0 1 −60

⎤

⎥

⎥

⎥

⎥

(16)
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⎣

0 0 0 1
⎦

Fig. 13. Error propagation in virtual assembly.

Fig. 14. Virtual assembly examples.

𝑅
2𝐶𝐇 =𝑅

1 𝐇1
1𝑅𝐇

1𝑅
2𝐴𝐇

2𝐴
2 𝐇2

2𝐶𝐇

=

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0.0002 0
0 1 0.0001 0

−0.0002 −0.0001 1 0.0416
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

𝑇 𝑟𝑎𝑛𝑠(𝑧, 40)

=

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0.0002 0.0080
0 1 0.0001 0.0040

−0.0002 −0.0001 1 40.0416
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

(17)

The origin of FCS1𝐶 is (0, 0, −60) in RCS, and the origin of FCS2𝐶
is (0.008, 0.004, −40.0416) in RCS. The coaxiality D12=0.0179 mm.

6722 virtual assembly examples are calculated based on 1600 dense
point clouds. The mapping dataset between dense point clouds and
coaxiality is obtained through the virtual assembly. Virtual assembly
examples are shown in Fig. 14. The statistics of the dataset are shown
in Table 4.

An assembly point could dataset is constructed based on the mod-
eling process. The dataset contains coaxiality values with 0.01 mm
accuracy and is labeled in ten tiers (T1 to T10). 6722 examples are
separated into the training set, validation set, and test set based on the
ratio 7:1:2. Additionally, Different tiers are divided into four gradings,
according to assembly quality. The details of this dataset are illustrated
in Table 4.
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Table 4
Details of point cloud dataset.

Tier Coaxilality value (mm) Grade Number of examples Train Val Test

T0 0 225 158 23 45
T1 0.01 Premium Grade 774 542 77 155
T2 0.02 928 650 93 186

T3 0.03 713 499 71 143
T4 0.04 Qualified Grade 608 426 61 122
T5 0.05 584 409 58 117

T6 0.06 543 380 54 109
T7 0.07 Reprocessed Grade 408 286 41 82
T8 0.08 532 372 53 106

T9 0.09 487 341 49 97
T10 0.1 Substandard Grade 415 291 42 83
T11 >0.1 505 354 51 101
Table 5
Training hyperparameter.

Config Value

Batch size 32
Epoch 500
Drop path rate 0.2
Learning rate 0.001
Optimizer Adam, betas = (0.9,0.999)
StepLR Step size = 20, gamma = 0.7
Decay rate 0.0001
n_points 1024
Sampling Furthest point sampling

4.4. Details of deep learning model implementation and evaluation metric

The feature interpreter and regression part of the proposed model
is programmed in Pytorch (1.9.0) with Python (3.8.11). The model is
trained on a workstation with a CPU of Intel Xeon Platinum 8375C
@2.90 GHz and an NVIDIA GeForce RTX 3090 GPU with 24 GB
memory using the PyCharm. The batch size of 32 is implemented for
the hyperparameter setting. Adam optimizer is set to 0.001 learning
rate and 0.9𝛽1, 0.999𝛽2. To balance the initial convergence speed and
the final convergence speed, the step learning rate and decay rate are
introduced in the training strategy. As for the sampling process, we
follow the training setting of the SOTA method PointNet++ and choose
1024 as the sampling number in one assembly surface pair. To get
better coverage results with limited training points, the furthest point
sampling algorithm is deployed to seek neighbor points relationship.
The training process lasts 500 epochs with a 0.2 drop path rate, and
the specific values of the hyperparameters are shown in Table 5.

4.5. Deep learning prediction result

In this paper, accuracy (Acc), recall (Rec), precision (Pre), and F1-
score (F1) are used to evaluate the SCCAPNet performance. To illustrate
the effectiveness of the method proposed in this paper, other point
cloud deep learning methods are also tested on the same dataset based
on the evaluation metric. The point cloud deep learning diagram, the
PointNet, is chosen as the experiment baseline. The method proposed in
this paper is also compared with the MLP neural network representative
PointNet++ and the graph neural network representative DGCNN.
Meanwhile, PointNext, the SOTA network in Modelnet 40, is trained
in the same dataset. The prediction result of these four methods and
SCCAPNet is shown in Table 6. Due to the limited parameters, PointNet
works poorest in our dataset, with an accuracy is less than 90%. The
performance of PointNext is the best in the MLP series and reaches
the top accuracy in all other methods, which is 92.06%. The method
proposed in this paper, SCCAPNet, is 1.11% higher than PointNext
(93.17% compared to 92.06%) and reaches the top one accuracy. Mean-
while, it is also the best in recall, precision, and F1-score. Especially,
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it performs well in the F1-score, 1.79% higher than the second one.
Table 6
Test result comparison with other methods.

Model Acc Recall Precision F1

PointNet 0.8823 0.8915 0.8985 0.8843
PointNet++ 0.9136 0.9028 0.9051 0.9179
DGCNN 0.9147 0.9188 0.9036 0.9111
PointNext 0.9206 0.9175 0.9231 0.9153
Ours 0.9317 0.9228 0.9335 0.9332

The results illustrate the effectiveness and the low misdiagnosis rate of
SCCAPNet, the key indicators of high precision assembly.

To better illustrate the details of the method proposed in this
paper, multi-dimensional data visualizations are performed as shown
in Fig. 15. The confusion matrix (Fig. 15(a)) demonstrates the details
of the prediction situation of each tier. Tier two gets the best prediction
result, reaching 99% accuracy and there are 11 categories with more
than 90% accuracy. Tier seven, with the lowest prediction rate, still
retains 87% accuracy. In the real industrial situation, the misjudgments
in the same grade (as shown in Table 4) are acceptable and the actual
accuracy rate will be higher. The chord diagram (Fig. 15(b)) shows the
misjudgment situation between different grades. The misjudgment of
the same grades is linked with the color line and the gray line means the
prediction result is in another grade. According to the chord diagram, it
can be found that there is no misjudgment between premium grade and
substandard grade, guaranteeing the method proposed in this paper will
not scrap high-quality parts. It is obvious that the link of premium grade
is typically less than the link of reprocessed grade, which illustrates
that SCCAPNet is sensitive to high-quality parts and good at screening
samples that do not require rework. If the same grade of misjudgment
is regarded as accurate, the accuracy of the method proposed in this
paper can improve by 1.89% and reach 95.06%.

The average precision (AP) and area under the curve (AUC) of
SCCAPNet are compared to the other four methods to declare the
prediction confidence, as shown in Fig. 16. As for the AP, the SCCAPNet
gets the highest value 0.9356, 0.0877 higher than the last one and it
also has the lowest standard deviation 0.0411. The PointNext reaches
the second position, equal to 0.9126±0.0763. Compared to the second
one, SCCAPNet is 0.023 higher in the AP value and 0.0352 lower in
the standard deviation, while PointNet is the worst performance, with
only 0.8479 AP value and the highest standard deviation of 0.1188,
corresponding to the test results shown in Table 6. At the same time,
the performance of all the methods on the AUC is around 0.4 higher
than that of AP, and the standard deviation has shrunk to about one-
half of the previous. The overall trend of the performance of the AUC
evaluation is basically the same as that of the AP, except that the
performance of DGCNN is better in AUC and it reaches the top during
the other four methods. The PointNet is still the last one with a 0.8843
AUC value and 0.0341 standard deviation. The SCCAPNet is 0.0181
higher than the second one (0.9852 compared to 0.9671) in the AUC

value, and the standard deviation is 0.0122 lower (0.0180 compared
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Fig. 15. Results visualization.
Fig. 16. AP and AUC results comparison.

to 0.0301). The experiment results show that SCCAPNet performs best
both in the AP and AUC evaluation, which illustrates that it is not
only accurate but also has high confidence and stability. SCCAPNet has
highly robust performance and better adapts to complex situations in
actual production.

To further illustrate the effectiveness of SCCAPNet, The point cloud
data is visualized, and the t-distributed stochastic neighbor embedding
(t-SNE) is plotted, as shown in Fig. 17. The original figure presents
the input data distribution in two-dimensional space without neural
network processing. The other five figures correspond to the prediction
results of different methods. Each point in the figure presents a test
example and the color means the category it belongs to. In the t-SNE
image, the closer the distance between the samples, the closer the
features extracted by the deep neural network. When the points of the
same color are densely distributed and the points of different colors are
discrete, it means that the feature extraction capability of the network
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is strong. The PointNet can clearly distinguish T7, T8, and T9, but it
cannot distinguish other kinds. Although the results of PointNet++,
DGCNN, and PointNext show a trend of separation of different types
of data, there are still many kinds of confusion in the central area.
It is obvious that the SCCAPNet is capable of completely isolating the
features of seven species and there is only a small amount of confusion
between T6, T9, and T10. The experiment result shows that most of the
twelve categories have clearly separable boundaries and demonstrate
the effectiveness of our backbone. This is mainly due to the multiple
information extraction and fusion of the self-channel cross attention
module.

4.6. Discussion

The method proposed in this paper is tested on aeroengine sim-
ulated parts. As the experiment results show, based on sparse point
clouds measured by CMM, the geometric distribution error model
can accurately reconstruct dense point clouds of contact surfaces and
effectively control the error within 0.001 mm. The virtual assembly
method successfully constructs the relationship between the dense
point cloud and coaxiality and establishes the dataset including the
assembly point clouds and corresponding coaxiality. The new deep
learning architecture SCCAPNet is tested on the dataset and realizes
SOTA performance compared to other baselines. The experiment result
shows that the method proposed in this paper can achieve 0.01 mm
precision coaxiality prediction with 93.32% accuracy. Meanwhile, the
prediction process is automatic and does not require any additional
modeling and parameter tuning. The method meets the needs of indus-
trial production and contributes to the accuracy assurance of precision
assembly and the reduction of assembly costs.

5. Conclusions

In this paper, a coaxiality prediction method for aeroengines preci-
sion assembly by combining the geometric distribution error model and
point cloud deep learning is proposed. A geometric distribution error
model is established to reconstruct dense point clouds to accurately and
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Fig. 17. Features visualization based on t-SNE.
omprehensively describe the machining error of aeroengine surfaces.
virtual assembly model is established to map between dense point

louds and coaxiality. A new point cloud deep learning backbone,
CCAPNet, is established to learn this mapping relationship and realize
he end-to-end prediction between point clouds and coaxiality. The
ain contributions of this study can be summarized as follows:

(1) This is the first attempt to introduce deep learning in the area
f aeroengine coaxiality calculation with 3D geometric distribution
rror point cloud input. The deep learning method realizes end-to-end
oaxiality prediction, which saves the cost of virtual assembly model
onstruction and parameter adjustment for specific measured objects.
t also improves the generalization of the assembly accuracy prediction
odel.

(2) A geometric distribution error model is derived to realize the
ccurate surface construction by the NURBS method. The impact of
icro geometric distribution errors on assembly accuracy prediction is

omprehensively considered in this paper.
(3) A new point cloud backbone, the SCCAPNet, is proposed in this

aper for effective point cloud feature learning. To further improve the
etwork performance, this paper introduces a new attention module,
he self-channel cross attention module, to reinforce the information
nteraction between different feature dimensions. This backbone is also
ompared with other deep learning baselines and reaches the top one
ccuracy in the point cloud based coaxiality prediction tasks.

(4) The precision assembly coaxiality prediction method is tested on
imulated aeroengine flange components. The experiment results veri-
ied the method can realize 0.001 mm accuracy geometric distribution
rror and 0.01 mm precision coaxiality prediction, which can be used
n real industrial situations and meets the requirement of aeroengine
ssembly.

The precision assembly coaxiality prediction method solved the
roblem of independent modeling for different contact surfaces in the
oaxiality prediction. With trained neural networks, coaxiality can be
btained directly by inputting geometric distribution error point cloud
nformation of contact surfaces, instead of modeling for this single
arget. The experiment results verified the effectiveness of the method.
his method solved the problem of coaxiality prediction for aeroengine
asing system assembly, so as to improve the assembly quality and
fficiency of the aeroengine. In the future, the variety and complexity
f the tested objects will be increased to improve the generalization of
693

he model.
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