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a b s t r a c t 

Background and Objective: Deep learning techniques are powerful tools for image analysis. However, the 

lack of programming experience makes it difficult for novice users to apply this technology. This project 

aims to lower the barrier for clinical users to implement deep learning methods in microscopic image 

classification. 

Methods: In this study, an out-of-the-box software, AIMIC (artificial intelligence-based microscopy image 

classifier), was developed for users to apply deep learning technology in a code-free manner. The plat- 

form was equipped with state-of-the-art deep learning techniques and data preprocessing approaches. 

Furthermore, we evaluated the built-in networks on four benchmark microscopy image datasets to assist 

entry-level practitioners in selecting a suitable algorithm. 

Results: The entire deep learning pipeline, from training a new network to inferring unseen samples 

using the trained model, could be implemented on the proposed platform without the need for pro- 

gramming. In the evaluation experiments, the ResNeXt-50-32 ×4d outperformed other competitor algo- 

rithms in terms of average accuracy (96.83%) and average F1-score (96.82%). In addition, the MobileNet- 

V2 achieved a good balance between the performance (accuracy of 95.72%) and computational cost (in- 

ference time of 0.109s for identifying one sample). 

Conclusions: The proposed AI platform allows people without programming experience to use artificial 

intelligence methods in microscopy image analysis. Besides, the ResNeXt-50-32 ×4d is a preferable solu- 

tion for microscopic image classification, and MobileNet-V2 is most likely to be an alternative selection 

for the scenario when computing resources are limited. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Microscopic analysis of cells and medical samples is an essen- 

ial procedure for health assessment and disease diagnosis in clin- 

cs. For example, motile sperms, oocytes, and embryos are rou- 

inely examined under the microscope for infertility assessment 

nd treatment [1,2] . Blood cells are the main components of blood. 

here are three basic types of blood cells: red blood cell (RBC), 

hite blood cell (WBC), and platelet [3] . WBC can be further clas- 

ified into neutrophils, eosinophils, basophils, lymphocytes, and 

onocytes. Blood cell classification is to recognize different types 

f blood cells and the abnormal samples, which is critical for di- 

gnosing blood cell-related diseases. For instance, In the diagnosis 

f Rhesus D (RhD) hemolytic disease, fetal RhD-positive cells need 

o be identified from maternal blood cells [4] . Traditionally, the ex- 
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mination of blood smears and recognition of blood cells are con- 

ucted under the microscope by experienced hematologists. Cell 

dentification and classification can be challenging because manual 

icroscopic analysis has low repeatability and is labor-intensive 

nd error-prone. 

Machine learning techniques have demonstrated potential su- 

eriority in a wide variety of areas [5–9] . This study focuses on 

he application of machine learning techniques in microscopic im- 

ge recognition. To identify the recent progress in this topic, we 

ueried the Web of Science, IEEE Xplore, ACM Digital Library, 

ubMed, ScienceDirect, and Wiley Online Library for publications 

ith the terms ‘machine learning and microscopic image classifica- 

ion’, ‘machine learning and blood cell classification’, ‘deep learning 

nd microscopic image classification’, and ‘deep learning and blood 

ell classification’ in their title, abstract and keywords. Besides, 

oogle Scholar was used for forward and backward searches. Fi- 

ally, 126 relevant projects were screened from the 2038 retrieved 

https://doi.org/10.1016/j.cmpb.2022.107162
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2022.107162&domain=pdf
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Fig. 1. Comparison of the general process of traditional machine learning approach and deep learning based method in blood cell classification. 
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tems after removing the duplicated and irrelevant works. Next, we 

ill introduce the representative contributions. 

Computer-aided technology has shown its potential to help 

eople diagnose various diseases [9–11] . Automated cell identifi- 

ation systems have been developed to overcome the challenges 

n manual cell classification. Automated detection systems can 

elieve experts from the heavy laboring of distinguishing differ- 

nt types of blood cells. Prior to the wide adoption of deep 

earning, the majority of studies employed conventional machine 

earning-based approaches, such as the k-nearest neighbors algo- 

ithm (k-NN) and support vector machine (SVM), to identify blood 

ells. 

In conventional learning-based methods, segmentation and fea- 

ure extraction are the prerequisite processes before the classifica- 

ion step. Despite the intricate tuning for feature extraction, these 

raditional methods were reported with unsatisfactory classifica- 

ion accuracy due to the lack of adaptive pre-processing meth- 

ds and reliable segmentation algorithms [12,13] . In addition, the 

ulti-stage workflow further introduces cumulative errors, lower- 

ng the classification accuracy. The limitations of existing meth- 

ds motivate researchers to develop advanced algorithms based on 

eep learning to solve the problem in blood cell classification [14–

6] . 

The past decade has witnessed a rapid evolution of machine 

earning, and deep learning networks have been proven critically 

elpful to serve as the right-hand man in dealing with real-world 

roblems [17–19] . A deep learning network, inspired by the bio- 

ogical neural network, can be trained to accomplish complicated 

asks, such as the detection of congenital heart disease [17] , iden- 

ification of diabetic retinopathy [20] , diagnosis of esophageal ade- 

ocarcinoma [21] , and screening of Covid-19 [22] . Different from 

onventional classification systems that involve crafting the fea- 

ures of the input data, deep learning-based classifiers can classify 

he raw images directly, making it feasible to build an end-to-end 

nalyzer, as shown in Fig. 1 . 

Artificial intelligence (AI) technology has significant value to the 

edical community under applicable guidelines [23,24] . Although 

he deep learning-based methods have demonstrated success in 

he blood cell classification by computer scientists, the transla- 

ional implementation for clinical use by medical practitioners re- 

ains a challenge, potentially due to the lack of sufficient cod- 

ng experience. Moreover, selecting an optimal method from many 

eep learning algorithms is a nontrivial task. To promote clinical 

ranslations, we developed a platform, AIMIC, for medical prac- 

itioners to apply deep learning algorithms in microscopic image 

lassification in a code-free manner. The software will simplify the 
b

2 
mplementation of AI-based methods for microscopic image analy- 

is by offering a user-friendly solution. In summary, the major con- 

ributions of this study include: 

• development of an out-of-the-box platform to lower the bar- 

rier for novice users to apply deep learning-based approaches 

for microscopic image classification. The users can carry out an 

end-to-end deep learning pipeline with the platform without 

any coding. Besides, the software provides an automatic k-fold 

cross-validation mode to facilitate the algorithm’s evaluation. 
• evaluation of ten state-of-the-art deep learning algorithms em- 

bedded in the proposed platform by measuring the standard 

performance metrics, i.e., accuracy, precision, recall, and F1 

score. The evaluation outcomes provide a reference for selecting 

an appropriate model. 
• assessment of the computational efficiency of these built-in 

networks. The assessment results provide a reference basis for 

the users to choose a solution that can balance the classifica- 

tion accuracy and computational cost when the computing re- 

sources are limited. 

The rest of the article is organized as follows. Section 2 reviews 

he related works. The proposed deep learning-deployment plat- 

orm and the experiments designed for deep learning model eval- 

ation are introduced in Section 3 , followed by the experimental 

esults in Section 4 . Section 5 discusses the evaluated models’ per- 

ormance and the advantages and limitations of the proposed soft- 

are. Finally, Section 6 concludes this work. 

. Related Works 

In the past few years, deep convolutional neural networks 

CNNs) have been reported to achieve great success in blood cell 

lassification. But before that, conventional machine learning tech- 

iques were often used to identify cell samples. 

.1. Conventional Machine Learning Approaches 

To automate the blood cell counting task, Ongun et al. ap- 

lied several machine learning algorithms to classify the blood cell 

mages based on the segmentation output and feature extraction 

shape, color, and texture) [25] . The experiment results demon- 

trated that SVM outperformed the other three methods (k-NN, 

inear vector quantization, and multi-layer perceptron) in terms 

f accuracy (91.03% vs. 80.76% vs. 83.33% vs. 89.74%). Kim et al. 

eported a framework to automatically recognize WBCs and RBCs 

ased on the morphological information [26] . They binarized and 
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egmented the input images and then extracted features from the 

reprocessed samples. Finally, the samples were classified by the 

eural network, linear vector quantization, and k-NN algorithm 

ased on the extracted morphological features. To reduce the bur- 

en of differential blood counts on pathologists, Tai et al. presented 

 hierarchical SVM method to classify blood cells into seven types 

sing the hierarchical features [27] . The proposed approach im- 

roved the recall rate by 56% to 95.27%, far exceeding its one- 

tage counterpart (66.84%). Noor et al. employed the speed up ro- 

ust feature (SURF) method to increase the accuracy of the artifi- 

ial neural network on the WBC classification task to 94.09% [28] . 

bdeldaim et al. introduced a dedicated system to diagnose blood 

ells to be normal or affected [29] . The system started from seg- 

enting the images, proceeded with extracting the features, and 

nded with normalizing the extracted features using three differ- 

nt techniques (z-score, min-max, grey-scaling). The system out- 

uts were fed into four different classifiers, namely K-NN, Naive 

ayes, SVM, and Decision Trees, to verify the efficiency of the pro- 

osed system. Finally, K-NN achieved the highest classification ac- 

uracy (96.42%). 

.2. Deep Learning Approaches 

In 2017, Li et al. employed a multi-layer CNN to discriminate 

yperspectral images into three classes: red cells, white cells, and 

ackground. The average accuracy of the CNN model exceeded 

hat of the SVM algorithm by around 30% in two self-collected 

atasets consisting of 16,218 and 8,004 images, respectively [30] . 

astidar’s group developed a customized platform, ShonitTM, to 

lassify the subtypes of WBC, RBC, and platelet. The sensitivity of 

he shonitTM platform was reported over 91% for all cell types 

31] . In a later study, Huang and his collaborators demonstrated 

hat the attention-aware residual network-based manifold learning 

odel outperformed the previous models with higher average ac- 

uracy (95.3%) when classifying 10,800 WBCs into six categories 

32] . In the ISBI 2019 C-NMC Challenge, Prellberg et al. fine-tuned 

he ResNeXt50 to differentiate cancerous cells from normal ones 

ith an 89.88% success rate [33] . Pan et al. achieved higher ac- 

uracy (91.73%) using a neighborhood-correction algorithm with 

odified ResNets in the same competition [34] . Acevedo et al. 

sed a fine-tuning VGG-16 to classify eight types of blood cells 

n the PBC dataset with an overall accuracy of 96.2% [35] . Subse- 

uently, Bagido et al. improved the classification accuracy of four 

ategories of samples in the same dataset to 98.4% with the pre- 

rained Inception ResNetV2 [36] . Jung et al. boosted the recogni- 

ion accuracy of W-Net from 91% to 96% on the LISC image set 

y pretraining the model on the collected samples [37] . Baydilli 

t al. solved the insufficient data problem in the blood cell iden- 

ification task with a bespoke architecture called WBCaps [38] . 

n the WBCaps, a new convolution layer was added to the front 

f the original capsule network [39] to enhance the feature ex- 

raction. The experiment results showed that their method ob- 

ained a higher success rate (96.86%) in the LISC dataset with- 

ut any data augmentation. Yao et al. attempted to classify the 

BCs by using a two-module deformable CNNs approach [40] . In 

his method, the deformable convolutional layers and the trans- 

er learning were used to improve the reliability and general- 

zation of the framework. Their experiment results verified that 

he proposed scheme was superior to the other CNNs and tra- 

itional algorithms regarding precision, recall, F1 score, and area 

nder the curve for three datasets with different characteristics. 

n a recent study, Das et al. utilized an efficient model that fea- 

ured depthwise separable convolutions and inverted residual ar- 

hitecture to yield classification accuracies of 99.39% and 97.18% 

n two benchmark datasets, ALL-IDB1 and ALL-IDB2, respectively 

41] . 
3

. Methods 

Our study bridged the gap for beginners to apply deep learning 

echniques to recognize microscope images in two steps. Firstly, we 

ntegrated the entire project pipeline, from training the network to 

nferring new samples using the trained model, into an easy-to- 

se graphical user interface (GUI). Subsequently, the state-of-the- 

rt networks embedded in this software were evaluated to provide 

 reference for entry-level implementers to select the appropriate 

olution. 

.1. The Bespoke Microscopic Image Classification Software 

We developed an out-of-the-box platform embedded with 

tate-of-the-art deep learning networks to assist biologists and 

linicians with limited coding experience in using deep learning 

echniques for microscopic image classification. This AI-based mi- 

roscopic image classifier, AIMIC, was developed with PyQt5, Py- 

orch, and other supporting packages (Table S1). The platform has 

wo different working modes: model training and sample predic- 

ion. The workflow of the AIMIC platform is summarized in Fig. 2 , 

nd a demonstration of the user guide is recorded in Video S1. The 

uilt-in models in the AIMIC can be trained from scratch or fine- 

uned on top of the pre-trained weight parameters generated from 

ransfer learning. In practice, a selected network is trained on the 

arget domain data, followed by the recognition of the test samples 

ith the trained model. In the first step, the dataset is uploaded 

o the AIMIC via a pop-up window to select the desired directory. 

uring the uploading process, the samples will be automatically 

abeled and assigned into training and validation sets according to 

ser settings. Then the inputs are adjusted (such as resizing im- 

ges to the desired resolution, transforming them to tensors, etc.) 

or feature extraction. In addition to statistical information of the 

atasets, the platform provides visualization functions to examine 

he samples in each category. After the input images are prepared, 

he user can select a suitable model with desired hyper-parameters 

nd settings to proceed with the training process. When transfer 

earning is applied, the pre-trained parameters transferred from a 

revious task can be loaded to the model during the initialization. 

f we want to assess a model in a k-fold cross-validation manner, 

he platform can automatically start the valuation process based 

n the given value of k . The indicators of each epoch, such as loss,

ccuracy, recall, and precision, are displayed real-timely in the in- 

ormation dialog when fitting the model. These indicators are also 

ecorded in the training log for archiving and/or further processing. 

ore importantly, the parameters of the epoch with the best per- 

ormance will be saved for classifying new samples. In the infer- 

nce procedure, the trained model is used to identify new unseen 

amples for a specific task. 

.2. Design of the Evaluation Experiment 

In the evaluation experiment, ten commonly-used CNNs, in- 

luding EfficientNet_B0 [42] , MobileNet-v3 [43] , MobileNet-v2 [44] , 

huffleNet-v2 [45] , ResNeXt-50 [46] , ResNet-50 [47] , ResNet-34 

47] , Inception-v3 [48] , GoogLeNet [49] , and VGG-16 [50] were 

rained to classify samples from the four standard blood cell clas- 

ification datasets (C-NMC [51] , ALL-IDB2 [52] , PBC [53] and LISC 

54] ), as shown in Fig. 3 . The selected CNNs share a similar struc-

ure with the same basic units, including convolutional layers, 

ooling, fully connected layers, and softmax layers. According to 

oogle Scholar Metrics, the models with the top three citation 

umbers (as of November 2021) among the general models and 

he efficiency models and/or their corresponding advanced ver- 

ions were selected. Each model was trained and tested separately 
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Fig. 2. The workflow of the proposed microscopic image classification platform (AIMIC). 

Fig. 3. The design of the evaluation experiment. 
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nder the same settings on the four datasets. For every model- 

ataset pair, five-fold cross-validation was used to ensure an ob- 

ective evaluation by avoiding biased results. In the five-fold cross- 

alidation, the original dataset was partitioned into five equal-size 

ubsets, of which one was reserved for testing the model, and the 

est were used as training data. The process was then repeated five 

imes until each subset had served as the validation set for once. 

he average of the five results was used as the evaluation refer- 

nce for a single model-dataset pair. The evaluated CNN models 

re introduced below by emphasizing their characteristics. 

The VGG network was proposed by the Visual Geometry Group 

t Oxford University and won the first place in the localization 

ask and the runner-up in the classification task in the ImageNet 
4

ompetition in 2014. Unlike the pioneer AlexNet [55] , VGG uses a 

maller convolution kernel (3x3) and a deeper architecture. There 

re four different configurations of VGG networks, among which 

he VGG-16 is the most widely used. 

The primary contribution of GoogLeNet is the introduction of 

he inception module, which can boost the performance of the 

odel by fusing the feature information at different scales. More- 

ver, the GoogLeNet lowers the computational complexity by using 

he 1 ×1 convolution operation for dimensionality reduction. 

Inception V3 is the advanced version of GoogLeNet with three 

ignificant improvements: the convolutions are modified with 

mall filters to save computational costs; the filter banks are ex- 

anded to solve the representational bottleneck; and additional 
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Fig. 4. Examples of the datasets. From left to right: C-NMC, ALL-IDB2, PBC, LISC. 
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echniques with RMSProp optimizer and batch-normalization are 

sed to improve the auxiliary classifier and label smoothing. 

The deep residual network (ResNet), proposed by the Microsoft 

esearch team, is regarded as a breakthrough in deep learning. The 

esidual learning principle (Fig. S1) is accomplished by shortcut 

onnections in the feedforward process to address the degrada- 

ion problem in model training. Since the residual principle en- 

bles building a network with increased depth, the performance 

s dramatically improved by adding more layers. ResNet-34 and 

esNet-50 are two substructures in the ResNet family. 

ResNeXt is modified from the ResNet with a strategy of splitting 

nd merging the building block (Fig. S2). While preserving similar 

omputational complexity, the ResNeXt divides the residual block 

nto multiple substructures with the same topology and then ag- 

regates them. ResNeXt-50 is the most commonly used configura- 

ion of ResNeXts. 

ShuffleNet [56] is built by applying the shuffled channels and 

ointwise group convolutions to reduce the computational cost for 

mplementation in portable devices. ShuffleNet-V2 is an improved 

ersion with four significant modifications, including equalizing 

he channel width, selecting a reasonable group number, avoiding 

etwork fragmentation, and reducing element-wise operations. 

MobileNet is another lightweight CNN that uses the depthwise 

eparable convolution (Fig. S3a) [57,58] for portable and mobile ap- 

lications. The upgraded version of MobileNet-v2 applies two addi- 

ional modifications, including the linearization of the bottlenecks 

nd the use of inverted residuals (Fig. S3b) to improve perfor- 

ance. MobileNetV3 is an advanced architecture built in the light 

f network search. Furthermore, the resource-consuming layers are 

odified to decrease the latency by applying a neo-activation func- 

ion and the squeeze-and-excite module [59] (Fig. S4). 

EfficientNets is another computation-efficient CNN family with 

 balance of the input resolution and the architecture depth and 

idth. EfficientNet-B0 was selected in this study because it re- 

uires the least computing resources in the EfficientNets family. 

.3. Deep Transfer Learning 

Deep transfer learning (DTL) is the application of a deep neu- 

al network pre-trained from the source domain to solve problems 

n different tar get domains [60] . DTL is a helpful technique since 

eep learning models are usually data-hungry in many fields and 

raining-expensive from scratch even if the data points are enough 

n a certain task [61–63] . Generally, transfer learning can be im- 

lemented by retaining all or part of the learnable parameters. In 

ome cases, to save computing resources and improve efficiency 

o an extreme, users can freeze feature extraction parameters and 

nly optimize the classifier’s parameters. Here, to better reflect the 

apabilities of the individual model, we fine-tune the entire net- 

ork on top of the pre-training parameters. 

. Results 

In this section, the potential practicability of the AIMIC was il- 

ustrated with an application example. Furthermore, the results of 

he model evaluation experiments were examined in terms of clas- 

ification performance and computational efficiency. 

.1. Details of the Datasets 

In this study, four publicly available datasets of blood cells were 

mployed to evaluate the deep learning models. The C-NMC and 

LL-IDB2 are binary-class datasets with large (n = 15114) and 

mall sample sizes (n = 260), respectively, while the PBC and LISC 

re multi-class datasets with large (n = 17092) and small image 

izes (n = 400), respectively. 
5 
The C-NMC dataset is a public hematological image set initially 

rovided for the ISBI 2019 competition. In the competition, par- 

icipants were required to identify the cancerous blood cells from 

he normal ones. The identification is challenging because these 

wo cell groups are morphologically similar in the samples. In this 

ataset, 12,528 of the total 15,114 images are used to train the 

odels. In the training data, 3389 healthy cells and 7,272 imma- 

ure leukemic blasts were well labeled for the model to learn, 

hile the remainder were for validation. In this study, the train- 

ng dataset was reorganized by randomly sampling leukemic blasts 

ith the same amount as the normal group to avoid the bias 

aused by imbalanced data [64] . 

ALL-IDB2 is a dataset collected by hematologists at M. Tetta- 

anti Research Center in Italy. This collection contains 130 benign 

ell samples and the same number of the diseased counterparts 

i.e., lymphoblasts). 

PBC dataset, prepared by Hospital Clinic de Barcelona, is com- 

only regarded as a benchmark for evaluating machine learn- 

ng models in differentiating different types of healthy peripheral 

lood cells. This dataset contains eight classes and 17092 high- 

efinition images. Similar to the C-NMC dataset, we also resampled 

he categories with larger numbers of samples to have the same 

umber as the group with the least amount to rebalance the data. 

inally, the PBC dataset is reproduced in this study to have 9,712 

mages with 1,214 for each category. 

LISC is an open-access database prepared by the Hematology- 

ncology and BMT Research Center of Imam Khomeini Hospital. 

he dataset has 250 images and is divided into six classes un- 

venly. Since the eosinophil and mixture groups only have 39 and 

 images, respectively, which are not enough for five-fold cross- 

alidation in deep learning models, these two categories were dis- 

arded. The remaining subset was processed in the same way as 

rocessing the PBC dataset, namely, removing redundant samples 

rom classes with a larger number of pieces. As a result, 192 im- 

ges in four categories were eventually selected for the experi- 

ent. 

All images in the four datasets are of 24-bit color depth, and 

he representative samples are shown in Fig. 4 . More detailed in- 

ormation about the databases is provided in Table 1 . 

.2. The Usability of the AIMIC 

In this section, an example application is presented to demon- 

trate the practicality of the proposed deep learning software. The 

xample was implemented on a laptop with a CPU of Intel(R) 

ore(TM) i5-9300H @2.40GHz and one NVIDIA GeForce GTX 1650 

PU. 

In this application, a network (e.g., MobileNet-v2) first learned 

he samples’ characteristics in the PBC dataset and then identified 

ew blood cell samples. For simplicity, we picked 10 0 0 samples 

rom each category, a total of 80 0 0 for the training phase and 

he remaining as the test data. The user interface of the train- 

ng model is shown on the left of Fig. 5 . The information and

xamples of the dataset can be visualized by clicking the corre- 

ponding function button (the upper right of Fig. 5 ). In the train- 

ng phase, the maximum training epoch was set to be 500. At the 

ame time, the process would stop early if the test accuracy was 
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Table 1 

Dataset details 

Datasets Categories Image Size (pixel) Format 

C-NMC ormal cell, malignant cell 450 ×450 BMP 

ALL-IDB2 healthy cell, blast cell 257 ×257 JPG 

PBC neutrophils, eosinophils, basophils, lymphocytes, monocytes, immature granulocytes, erythroblasts, platelets (thrombocytes) 360 ×363 JPG 

LISC basophil, eosinophil, lymphocyte, monocyte, neutrophil 720 ×576 BMP 

Fig. 5. Demonstration of the training process of the proposed AIMIC. 
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Confusion matrix. 

Data Class Ground Truth 

Positive Negative 

Prediction Positive TP FP 

Negative FN TN 
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ot improving for 50 consecutive iterations. Adam was chosen as 

he optimizer for the training, and the learning rate was set to be 

.0 0 01. Note that our program can automatically detect whether 

he device is configured with CUDA, and it will prioritize imple- 

enting the project on GPU(s) if the device has GPU(s). More- 

ver, transfer learning was used to accelerate training and improve 

ccuracy here. During the training, two progress bars (one for a 

ingle epoch and the other for the whole fitting stage) indicated 

he completion percentage of the training progress. In addition to 

he real-time indicators printed in the dialog, their evolution with 

poch would be plotted for visualization (the lower right of Fig. 5 ) 

hrough the corresponding command. In this case, it was seen that 

n top of the pre-trained parameters, the training process con- 

erged quickly, around 30 epochs, with a high validation accuracy 

over 98%). The trained model would be saved automatically dur- 

ng training when the learnable parameters were optimized to the 

esired state, where the validation indicators reached their optimal 

alue. 

In this application example, it took approximately 50 minutes 

o train the network on the GPU mentioned above. It is worth 

oting that, with the same settings, training a model on a CPU 

akes several times as long as on a GPU. In addition, the number 

f floating-point operations (FLOPs) and the structure of the model 

lso significantly influence the training speed. 

After being trained over the training set, the model was used 

o recognize new samples in the testing set. Here, eight images 

rom the testing set were used to verify the trained deep learn- 

ng model (i.e., MobileNet-v2 on the left of Fig. 6 ). In the inference

hase, the prediction results of each sample with the correspond- 

ng probability were updated in the information dialog in real time. 

he output file of the inference process includes the predicted cat- 

W

6 
gory and the corresponding probability, as shown in the upper 

ight of Fig. 6 ). In this example, the subtypes of eight blood cell 

amples were correctly inferred by the trained MobileNet-v2 with 

igh probabilities ranging from 0.785 to 0.998, which could be vi- 

ualized on the software for a user-friendly analysis, as shown in 

he lower right of Fig. 6 . 

.3. Classification Performance 

In order to shorten the experimental period, the evaluation ex- 

eriments were implemented on a DELL workstation with a CPU of 

ntel(R) Xeon(R) Gold 6226R @2.90 GHz and two NVIDIA Quadro 

TX 40 0 0 GPUs with 8GB memory. The proposed code-free plat- 

orm AIMIC enables us to conduct the experiments expediently. 

The performance of a classification model can be indicated by 

ounting the number of correctly predicted positive samples (true 

ositive or TP), the number of correctly recognized negative in- 

tances (true negative or TN), the number of negative samples in- 

orrectly assigned as positive (false positive or FP), and the number 

f positive instances misclassified to be negative (false negative or 

N). These four counts constitute a confusion matrix, as summa- 

ized in Table 2 , from which various metrics can be derived [65] .

e used accuracy, recall, precision, and F1 score for quantitative 
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Fig. 6. Demonstration of the inference process of the proposed AIMIC. 
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ssessment as in previous research [66,67] . Accuracy measures the 

ercentage of correct predictions overall, and it is expressed as fol- 

ows: 

ccuracy = 

1 

l 

l ∑ 

i =1 

T P i + T N i 

T P i + F P i + F N i + T N i 

(1) 

here, TP i , FP i , FN i and TN i are the number of the true positive,

alse positive, false negative, and true negative of class C i , respec- 

ively, i is the index of corresponding class number and l is the 

umber of the classes. The precision is the fraction of true positive 

 TP i ) among all the retrieved instances ( TP i + FP i ), while the recall

alue is the fraction of the true positive ( TP i ) among all the rel-

vant cases ( TP i + FN i ). F1 score provides a harmonic mean of the

recision and recall, and it is defined as: 

 1 scor e = 

1 

l 

l ∑ 

i =1 

2 × P r ecision i × Recall i 
P r ecision i + Recall i 

(2) 

The average accuracy, average recall, average precision, and av- 

rage F1 score for the evaluated deep learning models are sum- 

arized in Fig. 7 . The average values refer to the average of the

etrics of each model over the four datasets. As shown in Fig. 7 ,

ll the pre-trained CNNs have obtained values over 94% in terms 

f all four indicators. Among all the networks, ResNeXt-50-32 ×4d 

s the best selection with the average accuracy, average recall, av- 

rage precision and, average F1 score being 96.83%, 96.81%, 96.94%, 

nd 96.82%, respectively. Additionally, ResNet-50 also has relatively 

igh scores on the given metrics (accuracy 96.70%, recall 96.68%, 

recision 96.77%, and F1 score 96.69%). In addition to the family 

esNet, the inception architecture is also prevalent in computer 

ision research. Among the evaluated model, the performance of 

nception-v3 is second only to ResNeXt-50-32 ×4d and ResNet-50 

nd higher than other networks. VGG16 attained scores only higher 

han that of ShuffleNet-v2 ×1 (accuracy 94.45%, recall 94.47%, pre- 

ision 94.66%, F1 score 94.44%), which is a lightweight network de- 

eloped for mobile devices. 

The average F1 score is the harmonic measure of recall and pre- 

ision and can be used as a comprehensive indicator to evaluate 

he overall performance of the models. As given in Fig. 8 and Ta- 

le S2, the F1 score for different model-dataset pairs varies sig- 
7 
ificantly, ranging from 89% to 99%. All the networks performed 

onsistently well on the PBC with the highest value of 98.46% by 

esNet-50 and the lowest value of 97.05% by ShuffleNet-v2 ×1). 

he performance of individual approaches varies significantly on 

he LICS dataset, with the maximum F1 score difference up to 

.30% (i.e., 97.72% by ResNet-50 vs. 93.42% by GoogLeNet). For 

he C-NMC dataset, the F1 score of the models also differs from 

9.75% (by ShuffleNet-v2 ×1) to 92.77% (by ResNeXt-50-32 ×4d). 

he average F1 score of the ten evaluated models is significantly 

igher in ALL-IDB2 (98.00%) and PBC (97.85%) than that in C-NMC 

91.72%) and LISC (95.06%). As for the performance of different 

lgorithms, ResNeXt-50-32 ×4d attained the highest F1 score in 

-NMC (92.77%) and ALL-IDB2 (98.85%), while ResNet-50 outper- 

ormed other methods in the PBC (98.46%) and LISC (97.72%). 

.4. Computational Efficiency 

One of the drawbacks of deep neural networks preventing their 

pplication in some real-world applications, such as robots, cell- 

hones, and quadcopters, where the resource is limited, is their ex- 

ensive computation-consuming. Increasing the consumption com- 

lexity not only affects the experience but also does harm to the 

evice. Therefore, in practical applications, the efficiency of the 

eep learning models must be aware carefully. Herein, we con- 

ucted extensional experiments to analyze each model’s efficiency 

uantitatively. Instead of using indirect metrics, such as the volume 

f weight and the number of FLOPs, inference latency, a more di- 

ect indicator reflecting both software and hardware situation, was 

tilized to measure the efficiency of different networks. The mod- 

ls were run and assessed on the proposed software for a fair com- 

arison. 

The inference latency of the methods mentioned above for pro- 

essing the samples from the PBC dataset is shown shown in 

able 3 . The experiments were conducted on an ordinary per- 

onal computer with a CPU of Intel(R) Core(TM) i7-10700 CPU @ 

.90GHz, and a RAM of 8GB memory and the results were the 

verage value over ten runs under the same settings (Table S3 

nd dummyTXdummy-(Table S4). More specifically, two fashions 

f batch processing with 100 images as input and single process- 

ng with one image as input were compared separately. When only 
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Fig. 7. The average accuracy, recall, precision and F1 score of models over the four datasets. 

Table 3 

The inference latency of the models with the input of 100 images and one image, 

respectively. The scaling ratio refers to the latency of 100 images to that of one 

image. 

Models 100 images (seconds) 1 image (seconds) Ratio 

VGG-16 17.179 1.677 10.24 

ResNet-34 5.973 0.333 17.93 

ResNet-50 9.195 0.405 22.71 

GoogLeNet 3.444 0.209 16.46 

Inception-v3 9.686 0.439 22.06 

ResNeXt-50-32 ×4d 9.928 0.420 23.64 

ShuffleNet-v2 ×1 1.857 0.080 23.18 

MobileNet-v2 3.266 0.109 29.88 

MobileNet-v3-Large 2.518 0.108 23.24 

EfficientNet-B0 4.475 0.150 29.89 

o

a

s

t

i

s

s

t

t

5

t

l

h

M

m

o

(

r

k

R

b

m

s

o

i

o

t

i

n

e

I

f

i

c

p

t

b

i

t

r

p

M

0

a

c

m

d

o

A

ne image was fed into the platform, except for VGG-16 (1.677s), 

ll other methods could identify it within 0.5 seconds. The mobile- 

ize networks (less than 0.15s) run much faster than the conven- 

ional ones (more than 0.209s) as expected. The ShuffleNet-v2 ×1 

s the most efficient taking only 0.08 s to recognize the input in 

ingle processing mode, following by MobileNet-v3-Large (0.108 

), MobileNet-v2 (0.109 s) and EfficientNet-B0 (0.150 s). The same 

rend was also observed when a batch of 100 samples was fed into 

he platform. 

. Discussion 

The example application demonstrated in Section 4.2 shows 

he potential usability of the software that, by using AIMIC, deep 

earning models can be trained to recognize new samples with a 

igh probability of correctness without the need for programming. 

oreover, the proposed software can run on an ordinary laptop, 

aking it possible for users to implement the method in a point- 

f-care manner. The training process converged in fewer epochs 
8 
around 30) with high accuracy, revealing that deep learning algo- 

ithms can effectively improve their versatility and robustness with 

nowledge learned from other domains. 

As can be seen in Fig. 7 , among all evaluated models, the 

esNeXt-50-32 ×4d and ResNet-50 obtained the first and second 

est scores in terms of the standard metrics, respectively. Funda- 

entally, these two models share a similar backbone frame by 

tacking residual block layers repeatedly. The only improvement 

f the ResNeXt-50-32 ×4d is that it replaces the original build- 

ng block of ResNet-50 by aggregating multiple transformations 

f the uniform topology. The experimental results certified that 

he residual-based backbone has robust feature extraction capabil- 

ties, which is of central importance in the current deep learning 

etwork dealing with computer vision tasks because the features 

xtracted by the backbone are the basis for the further process. 

nterestingly, for the lightweight networks, MobileNet-v2 outper- 

ormed its next-generation counterpart, MobileNet-v3-Large, which 

s equipped with the squeeze-and-excite block [59] , in all four 

riteria (i.e., accuracy 95.72% vs. 95.36%, recall 95.73% vs. 95.37%, 

recision 95.96% vs. 95.67%, and F1 score 95.71% vs. 95.34%). Al- 

hough previous studies reported that MobileNet-v3-Large worked 

etter than the V2 version in the ImageNet consisting of large 

mages with various characteristics, MobileNet V3 is more prone 

o overfitting in microscopic datasets without adequate data and 

ich features. Moreover, while EfficientNet-B0 and MobileNet-V2 

erformed comparatively in classification performance metrics, 

obileNet-V2 needs less time to identify a new sample (0.109s vs. 

.150s), as summarized in Table 2 . Therefore, MobileNet-v2 is an 

ppropriate choice for microscopic recognition of blood cells when 

omputational resources are limited. 

As shown in Fig. 8 and Table S2, the performance of different 

odels on the PBC dataset is more steady than that on the LISC 

ataset. This is because, compared with LISC (Fig. S5), the target 

bjects in the samples of the PBC are much more salient (Fig. S6). 

 similar situation (only 1.93% difference in F1 score of different 
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Fig. 8. The F1 score for each model-dataset pair. M1, M2, M3, M4, M5, M6, M7, M8, M9 and M10 denote VGG16, ResNet-34, ResNet-50, GoogLeNet, Inception-v3, ResNeXt- 

50-32 ×4d, ShuffleNet-v2 ×1, MobileNet-v2, MobileNet-v3-Large and EfficientNet-B0, respectively. 
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pproaches) was also observed in ALL-IDB2 (Fig. S7), whose data 

as similar characteristics to that in PBC. The indicators of different 

odels on the C-NMC dataset vary significantly since the features 

f the samples in the same class differ widely (Fig. S8), making it 

ard for the different algorithms to learn. Hence, the performance 

f CNNs is largely determined by the saliency of the target objects 

n the images and the consistency of their features. ResNeXt-50- 

2 ×4d and ResNet-50 achieved the top two highest scores on all 

our datasets, further verifying the feature capture ability of the 

ackbone of the family ResNet. 

In addition to the recognition performance, the time complex- 

ty is an essential indicator for assessing a machine learning model 

70] . Traditionally, the FLOPs is used to measure the efficiency of AI 

odels. Besides the FLOPs, the computational complexity of a deep 

earning network is also affected by several other factors, such as 

he parallelism degree of the architecture and the memory access 

ost [45] . In this study, inference latency is used to evaluate the 

ime complexity as it is a composite metric taking into account 

ll these factors. In the experiments evaluating computational ef- 

ciency, it was interesting that as the number of input images in- 

reased, the lightweight models’ inference latency grew faster than 

hat of most traditional models, see Table 3 , Table S3, and Table 

4. As the input batch grew from one to 100, the time of the effi-

ient models spent to process the images increased by more than 

3 folds, while the latency of all the conventional networks ex- 

ept ResNeXt-50-32 ×4d increased by less than 23 times. This can 

e attributed to the fact that the initial processing time of conven- 

ional CNNs for recognizing objects is longer than that of efficient 

etworks. Hence, when the computing budget is affluent, the tra- 

itional models may be an ideal choice for large-scale classification 

n a batch. But for the limited resource scenarios, MobileNet-v2 

ight be a suitable choice for better trade-off accuracy and com- 

utational efficiency for microscopic image classification. 

Compared to the ZeroCostDL4Mic [71] , a cloud-based and 

rowser-based deep learning-deploy platform for image process- 
9 
ng, the AIMIC is a fully out-of-the-box solution independent of the 

nternet and browsers. Besides, the present platform aims at clas- 

ification, while the ZeroCostDL4Mic focuses on image processing 

asks, such as image segmentation, denoising, and restoration. The 

roposed AIMIC is more user-friendly to novice users than other 

I software, such as AIDeveloper [72] , by providing a concise yet 

unctional user interface. Furthermore, a hands-off label technique 

ailored for beginner users is built into the platform. More impor- 

antly, the new software offers an automatic k-fold cross-validation 

ode to facilitate the evaluation of the selected algorithms. 

We compare the classification performance of the proposed 

latform with the state-of-the-art methods. As summarized in 

able 4 , the classification accuracy obtained by AIMIC surpasses 

ll competitors on the C-NMC, ALL-IDB2, and LISC datasets. It per- 

ormed on par with the state-of-the-art on the PBC dataset. The 

est results among all built-in models are shown in Table 4 . It is

orth noting that a plain implementation of our method was con- 

ucted without fine-tuning, which further demonstrates the capa- 

ilities of the AIMIC. 

The proposed platform has been proven to be a useful tool for 

icroscopic image classification without the need for program- 

ing. However, training a deep learning model is a compute- 

ntensive job. In the above example, it took nearly an hour to 

rain a lightweight network (i.e., MobilNet-V2) on the high-end 

PU. Without GPU acceleration, the training time could be several 

ours. In extreme scenarios, the training process cannot be per- 

ormed effectively, such as training a large model on a device with 

nsufficient memory, which may lead to unsatisfactory classifica- 

ion results. Furthermore, deep learning models are data-hungry. 

enerally, the larger the size of the training dataset, the better the 

earning effect of the deep learning network. Therefore, to train the 

odel better, the user has to spend a lot of time and effort collect- 

ng and annotating the samples. 
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Table 4 

Performance comparison with the state-of-the-art methods on C-NMC, ALL-IDB2, PBC, and LISC datasets. The best results are shown in bold, and the second-best results 

are indicated by underlining. 

C-NMC ALL-IDB2 PBC LISC 

Methods Accuracy Methods Accuracy Methods Accuracy Methods Accuracy 

Zhao et al. [68] 86.29% Abdeldaim et al. [29] 96.42% Acevedo et al. [35] 96.2% Noor et al. [28] 94.09% 

Prellberg et al. [33] 89.88% Sahlol et al. [69] 98.5% Bagido et al. [36] 98.4% Jung et al. [37] 96% 

Pan et al. [34] 91.73% Das et al. [41] 97.18% Long et al. [67] 99.3% Baydilli et al. [38] 96.86% 

Proposed 92.77% Proposed 98.85% Proposed 98.46% Proposed 97.78% 

6

a

T

a

i

u

p

i

n

f

p

r

w

f

l

i

r

5

r

i

p

t

c

l

p

t

t

t

i

t

t

D

i

a

A

i

m

d

t

m

D

A

(

E

G

T

S

S

T

f

i

t

b

s

e

S

L

c

T

t

c

A

R

L

N

n

S

i

d

t

i

f

R

 

 

. Conclusion 

This paper presents a platform, AIMIC, for microscopic im- 

ge classification to those with limited programming experience. 

he proposed software embedded with state-of-the-art algorithms 

nd data preprocessing techniques can be used to identify images 

n a code-free manner. Moreover, the out-of-box platform has a 

ser-friendly interface and can run on an ordinary personal com- 

uter. If GPUs are detected on the device, the AIMIC can automat- 

cally employ the GPUs for processing, which will be more conve- 

ient for novices. The extensive experiments have verified the plat- 

orm’s usability by obtaining robust classification results on multi- 

le datasets. We believe the proposed software will lower the bar- 

ier for beginners to implement deep learning techniques in their 

ork. In addition, to help the cytologist select a suitable algorithm 

or a specific application, we also investigated ten popular deep 

earning methods for classifying blood cells. The evaluation exper- 

ments tested the models on four publicly available datasets. The 

esults show that two approaches in the ResNet family, ResNeXt- 

0-32 ×4d and ResNet-50, outperformed the other evaluated algo- 

ithms, suggesting that the backbone of ResNet has a robust learn- 

ng capability. For mobile device-oriented models, MobileNet-v2 

erforms on par with EfficientNet-B0 but with less inference la- 

ency. Therefore, MobileNet-v2 is an appropriate solution for mi- 

roscopic image classification when computational resources are 

imited. In addition to cell classification, other microscopic image 

rocessing (e.g., cell segmentation, cell counting, and cell detec- 

ion) is also crucial for biomedical applications. In the future, the 

echniques for these applications will be investigated and added to 

he AIMIC platform. 

In a nutshell, this study provides a critical reference for select- 

ng a suitable deep learning model, and the proposed AIMIC sys- 

em offers a simplified solution to take advantage of artificial in- 

elligence development for microscopic image analysis. 
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Fig. S1. The Schematic diagram of residual learning. Fig. S2. (a) 

he original residual block in ResNet. (b) The corresponding trans- 

ormation of (a) in ResNeXt with a cardinality of 32. Fig. S3. (a) 

s the depthwise separable convolutions, where a regular convolu- 

ion is separated into a depthwise convolution operator followed 

y a pointwise one. (b) illustrates the inverted residual block, the 

ize ratio between the input and the inner part of which is differ- 

nt from that of conventional residual block, where k < 1. Fig. S4. 

queeze-and-Excite block. Fig. S5. Example of samples from the 

ISC database. From left to right: basophil, lymphocyte, mono- 

yte, neutrophil. Fig. S6. Example of samples from the PBC dataset. 

op (from left to right): basophil, eosinophil, erythroblast, imma- 

ure granulocyte. Bottom (from left to right): lymphocyte, mono- 

yte, neutrophil, platelet. Fig. S7. Example of samples from the 

LL-IDB2 dataset. Left: probable lymphoblast from ALL patients. 

ight: healthy cell from non-ALL patients. ALL stands for Acute 

ymphoblastic Leukemia. Fig. S8. Example of samples from the C- 

MC image set. Top: acute lymphoblastic leukemia cells. Bottom: 

ormal cells. Table S1. The packages used in the software. Table 

2. The average F1 score of each model-dataset pair. Table S3. The 

nference latency of the models with the input of 1 sample. No.# 

enote the experiment number. Table S4. The inference latency of 

he models with the input of 100 samples. No.# denote the exper- 

ment number. Video S1. User tutorial of the software. 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.cmpb.2022.107162 . 
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