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Abstract—Previous work utilized three-dimensional (3-D) con-
volutional neural networks (CNNs) tomodel the spatial appearance
and temporal evolution concurrently for sign language recognition
(SLR) and exhibited impressive performance. However, there are
still challenges for 3-D CNN-based methods. First, motion infor-
mation plays a more significant role than spatial content in sign
language. Therefore, it is still questionable whether to treat space
and time equally and model them jointly by heavy 3-D convolutions
in a unified approach. Second, because of the interference from the
highly redundant information in sign videos, it is still nontrivial
to effectively extract discriminative spatiotemporal features re-
lated to sign language. In this study, deep R(2+1)D was adopted
for separate spatial and temporal modeling and demonstrated
that decomposing 3-D convolution filters into independent spatial
and temporal convolutions facilitates the optimization process in
SLR. A lightweight spatial–temporal–channel attention module,
including two submodules called channel–temporal attention and
spatial–temporal attention, was proposed to make the network
concentrate on the significant information along spatial, temporal,
and channel dimensions by combining squeeze and excitation atten-
tion with self-attention. By embedding this module into R(2+1)D,
superior or comparable results to the state-of-the-art methods on
the CSL-500, Jester, and EgoGesture datasets were obtained, which
demonstrated the effectiveness of the proposed method.

Index Terms—Attention mechanism, R(2+1)D, sign language
recognition (SLR).

I. INTRODUCTION

S IGN language recognition (SLR) aims to convert sign
language, a nonverbal communication form for deaf-mute

people, into speech or text to bridge the gap between deaf–
mute communities and hearing people. SLR can also be ap-
plied as a human–computer interaction (HCI) tool and promote
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communication between humans and machines. In recent years,
SLR has made significant progress due to the increasing devel-
opment of deep learning [1] but has not been entirely resolved.

The first challenge is spatiotemporal modeling. The two-
dimensional (2-D) convolutional neural networks (CNNs) have
been well demonstrated in various vision tasks, such as object
detection [2], [3] and image classification [4]–[8]. A simple way
to extend 2-D CNNs is to use off-the-shelf 2-D CNNs as frame-
level feature extractors and then perform a later fusion to predict
the video category [9]–[11]. However, this method ignores the
temporal evolution between adjacent frames, and the perfor-
mance is even worse than that of handcrafted feature-based
methods. Some [12]–[17] have proposed adopting recurrent
neural networks (RNNs) over the top of 2-D CNNs to model the
temporal connection. However, this kind of method only builds
the temporal relationship of high-level features and is difficult to
optimize. Recently, 3-D CNNs have demonstrated the capacity
of spatiotemporal modeling simultaneously [18]–[22] from low-
level to high-level benefit from the hierarchical architecture, but
the disadvantage is that 3-D CNNs are of high computational
cost and thus challenging to optimize. In addition, with the
directly extended temporal dimension of the original 2-D convo-
lution, 3-D convolution treats spatial and temporal dimensions
equally. However, space and time are not always equivalent, and
jointly modeling them may also lead to optimization difficulties.
Although the emergence of large-scale datasets and pretrained
models alleviates the difficulty of training a deep 3-D CNN
to some extent [23], whether it is necessary to model spatial
appearance and temporal evolution jointly by 3-D convolution
filters is still a question in SLR, especially considering that
most of the video samples cannot be distinguished by similar
spatial content, while the temporal dynamics are of more vital
significance in sign language.

Second, video-based SLR is still a challenge due to the highly
redundant information in space and time, which may distract
a video model from extracting discriminative spatiotemporal
features and thus limit the performance improvement. A sign
gloss consists of manual features such as fine-grained hand
gestures and even nonmanual features, including facial expres-
sions and upper-body posture [24]. These regions of interest are
relatively smaller than the whole video frame, so the cluttered
background easily misguides the network. Furthermore,
videos are redundant along the temporal dimension, and there is
usually no distinct difference between consecutive video frames.
Therefore, it is a challenge to focus on the exact spatial regions
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and temporal moments where and when motion occurs. Some
works used external tools, such as hand detection [11], [14],
[25], [26], to focus on the hand, but the performance depends
heavily on these tools and ignores nonmanual features. Some
relied heavily on multistream inputs such as depth, skeleton,
and optical flow [27]–[36] to make the network extract more
discriminative features related to sign motions. However, the
repetitive feature extraction of multistream inputs inevitably
increases the demand for memory and computing resources.

In contrast, human vision systems have effective attention
mechanisms to concentrate on the relevant objects and
motion patterns of regions of interest and significant moments
without external tools or multichannel inputs, which is
difficult for deep neural networks. In previous research,
attention mechanisms have been investigated and demonstrated
remarkable improvement [8], [37]–[39]. Despite some
successful attempts at the attention mechanism in SLR [31],
[40]–[43], few studies have examined the combination of
spatial, temporal, and channel attention.

In this article, to effectively model the spatial appearance and
temporal evolution, R(2+1)D [44]was adopted, which decom-
poses 3-D convolutions into 2-D convolutions for spatial model-
ing and 1-D convolutions for temporal learning as the backbone.
In conducted experiments, it was demonstrated that (2+1)D
decomposition greatly facilitates the difficulty of training a 3-D
CNN and shows obvious performance improvement. To elim-
inate the interference from irrelevant information and extract
more discriminative spatiotemporal features without adding
heavy overhead, a lightweight SE-like attention module called
spatial–temporal–channel attention (STCA) was proposed that
decomposes the whole STCA into two submodules: channel–
temporal attention (CTA) and spatial–temporal attention (STA).
For CTA, the global information along spatial dimensions was
first obtained to generate the channel-temporal descriptor (chan-
nel descriptor with temporal dimension). Then, a temporalwise
multi-layer perceptron (MLP) network with a self-attention op-
eration was adopted to model the channel relation and global
temporal evolution. For STA, global information was utilized
along the channel dimension, and multipath convolution layers
were adopted for multiscale spatial modeling and local tem-
poral learning. The two submodules were complementary for
the whole STCA, especially both local and global temporal
components. It was demonstrated that R(2+1)D with the STCA
module improved the model performance and obtained superior
or competitive results to state-of-the-art methods on the CSL-
500, Jester, and EgoGesture datasets.

The rest of this article is organized as follows. First, we
review the related work in Section II. Then, we describe the
details of our method in Section III. Experiments and analyses
on CSL-500 and Jester are shown in Section IV. Finally,
Section V concludes this article.

II. RELATED WORK

A. Spatiotemporal Modeling of CNNs

CNNs have proven to be effective methods of tackling various
vision tasks, such as object detection [2], [3], image classifica-
tion [4]–[8], and action recognition [9], [12], [13], [18]–[21],

[44]–[50]. Karpathy et al. [9] proposed extending image-based
2-D CNN models into video tasks by later fusion to predict the
action class of a video. However, the performance does not com-
pare with the handcrafted feature methods without considering
the motion changes among consecutive frames. Some [12], [13]
proposed utilizing RNNs over the representations of frames to
model the temporal evolution of videos. However, they only
build a high-level temporal connection while neglecting the
low-level component.

To incorporate temporal information, Simonyan et al. [45]
introduced a two-stream network. This design consists of a
spatial path to learn the spatial appearance and a temporal path to
model the temporal evolution by optical flow. TSN [46] extended
such a two-steam framework and proposed the sparse sampling
strategy. Although the two-steam architecture has powerful spa-
tiotemporal learning ability, there is an expensive computational
cost for calculating the optical flow.

Recently, because of the pretraining on large-scale video
datasets, 3-D CNNs have demonstrated their effectiveness over
2-D CNNs in video understanding tasks such as action recogni-
tion [18]–[21], [44], [47]. Tran et al. [18] proposed the first well-
known but shallow 3-D CNN network C3D, which is designed
based on VGG [4]. To make full use of off-the-shelf pretrained
2-D CNNs, I3D [19] proposed inflating 2-D Inception [5]. Hara
et al. [21] presented very deep 3D-ResNet and its variants by
replacing all the 2-D filters with 3-D convolution filters and
demonstrated that pretrained models on Kinetics [23] contribute
to significant progress in various video tasks. Feichtenhofer et
al. [22] proposed a two-path design called SlowFast for captur-
ing both static and dynamic information and showed impressive
performance. To reduce the heavy computational cost of 3-D
CNNs, Tran et al. [44] and Xie et al. [47] rethought spatial and
temporal modeling, proposed factorizing 3-D convolutions into
2-D spatial convolutions and 1-D temporal convolutions, and
demonstrated that this (2+1)D is also much easier to optimize.

B. Sign Language Recognition (SLR)

In addition to being a tool for HCI to promote communication
between humans and machines, SLR can also convert videos of
hand signs into text or speech, which is helpful in real-world sce-
narios to assist people with speech or hearing impairments [51].

SLR generally includes two tasks, i.e., isolated SLR (or
isolated hand gesture recognition) [10], [14]–[17], [27]–[36],
[40], [41], [52]–[59], which aims to recognize sign glosses
independently, and continuous SLR [24], [42], [43], [60]–[63],
which recognizes a longer sign video into ordered glosses. In
this article, we focus on the basic isolated SLR.

Conventional approaches usually extract hand-crafted fea-
tures [25], [61], [64] and utilize hidden Markov (HMM) [33],
[52], [60] or dynamic time warping [53], [61] to model the
temporal relationships in sign videos. With the great success of
2-D CNNs, Pigou et al. [10] adopted a 2-D CNN as the backbone
to extract frame-level features and then some fusion strategies [9]
for the classification. Mohammed et al. [11] proposed using hand
detection and lightweight 2-D CNN for gesture recognition.
However, such an approach cannot effectively capture motion
information and results in temporal information loss because the
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framewise feature is isolated with adjacent frames. Due to the
great success of RNNs for temporal modeling, others [14]–[17]
adopted this sequence model on top of a 2-D CNN to model
the temporal relation. Nevertheless, the frame-level feature is
of a high level and may also lose some valuable low-level
information. Kopuklu et al. [59] introduced a novel method to
fuse the data and recognize hand gestures based on TSN [46].

Multimodality has been shown to be helpful in SLR. Kumar et
al. [33] proposed an isolated SLR method based on multiple clas-
sifiers, including HMM and long short-term memory (LSTM),
for multimodal inputs. Xiao et al. [34] also proposed a similar
approach for isolated Chinese SLR. Chansri et al. [35] adopted a
later fusion for the depth and color information from the captured
images. Similar research by Bird et al. [36] also confirmed that
the fusion-based method was effective for multimodal American
SLR.

The 3-D CNNs have proven to be effective in spatiotem-
poral modeling simultaneously; therefore, many 3-D CNN-
based networks have been applied to SLR [27]–[31], [54],
[55], [58] and can further be improved by multimodal data.
Molchanov et al. [54] proposed a shallow 3-D CNN to rec-
ognize hand gestures using depth video and intensity data.
Huang et al. [27] also proposed a shallow 3-D CNN-based
method using multimodal inputs for SLR. Molchanov et al. [55]
used both RNNs and 3-D CNNs for hand detection and recogni-
tion. Wu et al. [28] proposed applying 3-D CNN for multimodal
gesture recognition. Li et al. [29] proposed a large-scale gesture
recognition approach using C3D. Li et al. [30] proposed using
C3D and multimodal data for gesture recognition. Although
multimodal approaches can provide significant performance
gains, the additional memory and computational costs cannot be
ignored. Zhang et al. [58] proposed deep deformable 3-D CNNs
for gesture recognition but only utilized the RGB modality for
efficiency.

C. Attention Mechanism

Attention is of vital importance in human perception [37].
The attention mechanism is characterized by concentrating on
discriminative information, which is more critical to the task.
Recently, there have been many attempts [8], [37], [38] to
adopt the attention mechanism to improve CNNs. Hu et al. [8]
introduced a lightweight squeeze and excitation (SE) module to
exploit the channel relationship based on global average-pooling
information. Woo et al. [37] further exploited spatial and channel
attentions and proposed a convolutional block attention module
(CBAM). Perez et al. [38] also proposed an SE-like attention
module that decomposes the process of generating the STCA
into two subprocesses. In addition, in natural language process-
ing (NLP), Vaswani et al. [39] proposed a novel self-attention
operation for global modeling, and their transformer dominated
many NLP tasks.

D. Applications of Attention in SLR

In SLR, attention mechanisms, including spatial attention,
temporal attention, and self-attention, have been used to improve
performance. Huang et al. [31] proposed an attention-based

C3D [18] using multimodal inputs for large-vocabulary isolated
SLR. In this article, an untrainable spatial attention mask was ap-
plied for selected joints, and a temporal attention module based
on LSTM was integrated to model the attention of different clips
for the transformation of clip-level predictions into video-level
predictions. In other studies, DE et al. [40] utilized a multi-
head attention-based transformer encoder for SLR, and Slimane
et al. [41] adopted a similar method to consider the context
impact. Camgoz et al. [42], [43] adopted the transformer-based
encoder–decoder framework and multichannel inputs to achieve
high reliability for SLR.

III. METHODOLOGY

An overview of the proposed approach is illustrated in Fig. 1.
First, RGB videos were randomly sampled into long-range clips
using the sparse sampling strategy [46]. Then, these clips were
forwarded into R(2+1)D with the STCA block. Finally, the
prediction of a sign video was obtained. The details of the
approach and discussion are as follows.

A. Channel–Temporal Attention

Each channel of the deep network was recognized as a feature
extractor [37], so the CTA module computes the significance of
different object-motion patterns and their temporal evolution.
Given a 4-D feature map F ∈ RC×T×W×H , the global infor-
mation was utilized by average pooling and max pooling, as
in [37] and [38], along the spatial dimension (W ×H) to yield
two compact channel-temporal descriptors dct-max and dct-avg

(d ∈ RC×T ), each of which can be recognized as a channel
descriptor of size C evolving T moments.

To model the channel relation, dct-max and dct-avg were for-
warded into a temporalwise MLP network with one hidden layer
as in [8], [37], and [38]. The design of the reduction ratio r
was also followed, which reduces the number of neurons in
the hidden layer to the size of C/r to limit the complexity. To
model the temporal dynamic, different from [38], which uses
local temporal convolution, a self-attention layer with position
encoding [(1) and (2) were adopted, and (5) was proposed
in [39]) was used for global temporal attention. Considering
the computational complexity, the self-attention operation was
inserted into the middle of the bottleneck for efficiency, which
was also different from W3 [38]. A sigmoid function was finally
applied to generate a single CTA descriptor DCT. This process
is summarized as

PE(pos, 2i) = sin(pos/10 0002i/c) (1)

PE(pos, 2i+ 1) = cos(pos/10 0002i/c) (2)

dct = relu (w1 (dct-max + dct-avg))) (3)

[qct, kct, vct] = [wq, wk, wv] · (PE(dct
T ) + dct

T ) (4)

d′ct = softmax

(
qct · kTct√

dk

)
· vct (5)

DCT = σ(w2

(
d′ct

T
)
) (6)
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Fig. 1. Top: An overview of our method for isolated SLR; the sparse sampling strategy is utilized to generate a long-range clip of T frames. Bottom: The CTA
and STA are inserted into each (2+1)D residual block.

c = dk = C/r (7)

where PE denotes the position encoding, w1 ∈ RC×C/r and
w2 ∈ RC/r×C denote the components of MLP,wq ∈ RC/r×C/r,
wk ∈ RC/r×C/r, and wv ∈ RC/r×C/r denote the linear projec-
tion for the self-attention as in [39] to generate the query (qct),
key (kct), and value (vct) vector, dk denotes the dimension of
kct and is equal to both c and C/r, and σ denotes a sigmoid
function.

In addition, a residual connection was adopted inside CTA
when refining the feature map to preserve the original feature
map. The final process is summarized as

FCT = DCT

⊗
F + F (8)

where
⊗

denotes the elementwise multiplication with broad-
casting, + denotes the inner residual connection in CTA, and
FCT denotes the refined feature map after the CTA submodule.

B. Spatial–Temporal Attention

A sign consists of the temporal evolution of hands, body,
head, eyes, and faces, so STA modeling was crucial to con-
centrate on these regions of interest evolving over time. Given
a 4-D feature map F ∈ RC×T×W×H , global information was
first utilized by both max-pooling and average-pooling along
the channel dimension to obtain two spatial–temporal descrip-
tors dst-max ∈ R1×T×W×Hand dst-avg ∈ R1×T×W×H . Then, the
descriptors were directly concatenated along the channel di-
mension into dst ∈ R2×T×W×H as in [37] and [38]. Different
from CBAM and W3, which adopt fixed filter size for both
spatial convolution and temporal convolution filters, inspired by
Szegedy et al. [5], the dst was then forwarded into a multipath
2-D convolution layer (filter size of each path is set to 3, 5, and
7) to exploit the multiscale spatial relation and 1-D temporal
convolution layer (filter size is set to 3, 5, and 7) to model the
multiscale local temporal interdependency. Finally, a sigmoid
function was applied to yield the final STA descriptor DST. In
summary, the STA descriptor is computed as

dst = concat [dst-max, dst-avg] (9)

DST = σ(Conv1d (relu(Conv2d (Dst)))) (10)

where σ denotes a sigmoid function, Conv2d represents the
multiscale 2-D spatial convolution layer, and Conv1d denotes
the multipath 1-D temporal convolution layer.

Similarly, a residual connection was also adopted inside the
STA to preserve the original information (the last plus sign at the
bottom of Fig. 2). The last process of STA to refine the feature
map is summarized as

FSTC = DST

⊗
FCT + FCT (11)

where FCT denotes the refined feature map after CTA and FSTC

denotes the final refined feature map.

C. Integration With Residual Blocks

R(2+1)D is a temporal extension of standard ResNet [6]. In the
conducted experiments, the same expanding strategy as [44] was
first adopted, which used one downsampling along the spatial
dimension at conv1 and three downsampling at conv31, conv41,
and conv51 along spatial and temporal dimensions to obtain
R3D. Then, the spatial and temporal modeling was decomposed
by factorizing 3-D convolution filters and constructing R(2+1)D
by replacing the 3-D residual block of R3D with a (2+1)D block.
Tran et al. [44] provide more specifications of the R(2+1)D
architectures considered in conducted experiments.

As illustrated in Fig. 3, our STCA-R(2+1)D was built by
inserting CTA and STA into each residual block. Therefore, there
were two types of residual connections: the adopted residual
connections inside CTA and STA and the original residual
connection in ResNet. CTA and STA were combined to simulate
human attention mechanisms to concentrate on discriminative
features (channel) of regions of interest (spatial) and significant
moments (temporal). As illustrated in Fig. 2, given a 4-D feature
map F ∈ RC×T×W×H in the residual block as input, CTA first
computed a 2-D CTA descriptor DCT ∈ RC×T using global
spatial information and then generated the refined feature map
FCT; STA first generated a 3-D STA descriptorDST ∈ RT×W×H

using global channel information and then generated the final
feature map of the convolution path of the residual block, which
was refined along spatial, temporal, and channel dimensions.
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Fig. 2. Overview of the proposed STCA module. Top: CTA. Bottom: STA.

Fig. 3. Altered residual blocks in our experiments.

D. Comparisons With SE, CBAM, and W3

Inspired by SE [8] and CBAM [37], global information was
utilized and temporalwise MLP with a bottleneck design for
modeling the channel relation in the STCA was used. Following
W3 [38], which shows strong performance in video understand-
ing, the static SE and CBAM were modified by introducing tem-
poral attention, and the whole STCA module was decomposed
into two submodules.

The first difference between STCA and W3 was the temporal
modeling in CTA. Global temporal modeling was adopted by
a self-attention operation in this article, while W3 was focused
on local modeling using temporal convolution layers. Instead
of simply replacing the temporal convolution, the temporal
modeling component was inside the bottleneck, making the
module lighter. However, the temporal convolution layers of W3
introduce too many parameters (see Tables II and VII).

The second improvement was that multiscale convolution
filters were adopted that increased the receptive field and gen-
eralization performance for generating the spatial–temporal de-
scriptor in STA, while W3 only utilizes convolution filters of
fixed size. Although it was proven in CTA that the self-attention
operation performs better than temporal convolution and even
multiscale temporal convolution layers (see Table II), consid-
ering the rapidly increasing module complexity and the risk
of overfitting (the complexity of self-attention after the spatial
convolution of STA is O (T 2× H × W)), self-attention was
not utilized in STA (see Table IV). Instead, multiscale local
convolutional operations were adopted for temporal learning.

Finally, the W3 module in [38] did not use inner residual
connections that were critical in the proposed method. Without
the inner residual connection, the background noise or unrelated
features in the current layers will be permanently suppressed.
In the proposed STCA, the inner residual connection layer can
preserve the original feature map (the output of the main branch),
which is helpful for subsequent layers (see Table VI).

IV. EXPERIMENTAL DETAILS

We performed our experiments on three datasets, i.e., CSL-
500 [31], Jester [65], and EgoGesture [66]. First, we introduce
the three datasets. Then, the implementation details of our
experiments are described. Finally, the results and analyses are
discussed.

A. Datasets

1) CSL-500 Dataset: The CSL-500 [31] dataset consists of a
single vocabulary of 500 signs in daily life, and each is recorded
five times by 50 signers. Therefore, there were 125 000 instances
in total. Each sample includes RGB, depth, and skeleton data.
In this study, only RGB was utilized.
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TABLE I
COMPARISON RESULTS ON CSL-500 [(2+1)D VERSUS 3-D]

TABLE II
EFFECT OF SELF-ATTENTION IN CTA

TABLE III
IMPACT OF r IN CTA

TABLE IV
IMPACT OF MULTISCALE SETTING IN STA

For a fair evaluation, as in [31], 36 signers were selected for
training (90 000 videos) and the rest for testing (35 000 videos),
and no overlap exists between the signers of the two subsets.

2) Jester Dataset: The Jester dataset [65] contains 27 kinds
of predefined hand gestures. There are 148 092 instances in
total and are officially segmented into a training set (118 562
samples), validation set (14 787 samples), and test set (14 743
samples). Although sign language, which also involves nonman-
ual components, is not equal to hand gestures, the performance
of the proposed method can also be evaluated, especially the
performance of temporal modeling.

TABLE V
COMPONENT ANALYSIS OF STCA

TABLE VI
IMPACT OF INNER RESIDUAL CONNECTION IN STCA

TABLE VII
COMPARISON WITH SE-LIKE ATTENTION MODULES

3) EgoGesture Dataset: EgoGesture [66] is also a large-
scale egocentric hand gesture dataset containing 2081 RGB and
depth videos and 24 161 gesture samples involving 83 dynamic
gesture classes. In the experiment, the trained model using the
validation subset and test subset was evaluated.

B. Implementation Details

R(2+1)D was utilized as the backbone and inserted the STCA
into each residual block. In CTA, the reduction ratio r of CTA
was initially set to 16. Pretrained models were utilized on
Kinetics [23] for parameter initialization.
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For all experiments without additional explanation, RGB only
was adopted as input, and the sparse sampling strategy [46] was
adopted to produce long-range clips (T = 16 in the experiments
without other explanation). First, a video ofN frames was evenly
divided intoT segments. Then, one frame was randomly selected
from each segment to generate a long-range clip with T frames.
Due to the sparse strategy, the long-range clips can represent the
whole temporal evolution of sign videos. Because of random
selection, the sparse sampling strategy can be recognized as a
temporal augmentation method.

During the training process, the short side of the frames was
scaled to s, and the original aspect ratio was maintained. s was
randomly selected between 144 and 170. Then, random cropping
was utilized, and the cropped size of each frame was 128× 128.
All networks were trained with SGD, and the batch size, initial
learning rate, weight decay, and momentum were 16, 0.001,
1e-4, and 0.9, respectively.

During the test process, each frame of the long-range clip
generated by the sparse sampling strategy was first resized to
144× 144. The prediction of a sign video was then obtained by
averaging multiple clips (ten clips per video unless otherwise
specified) of 128× 128 generated by center cropping.

C. Ablation Study

1) (2+1)D Versus 3-D: The deep R(2+1)D with R3D was
first compared on the CSL-500 dataset to evaluate whether
independent spatial and temporal modeling was suitable for
SLR. For a fair comparison, pretrained models on Kinetics
were used for both R3D and R(2+1)D. As given in Table I,
even the shallowest R3D-18 can obtain over 0.88 test accuracy
on CSL-500, which demonstrates the spatiotemporal modeling
capacity of 3-D convolutions. However, each R3D of different
depths in the experiments was inferior to its (2+1)D variant,
and R(2+1)D-50 achieved the best performance among basic
architectures in the conducted experiments. It was argued that
modeling spatial appearance and temporal evolution jointly by
3-D convolutions was not necessary for SLR, and (2+1)D de-
composition greatly facilitates the optimization process (factor-
izing the spatiotemporal modeling process) by decomposing the
heavy 3-D convolution filters into 2-D filters and 1-D filters. In
addition, R(2+1)D doubles the nonlinearity because of the extra
RELU in each (2+1)D residual block, resulting in the improved
model capacity without introducing additional parameters.

As the model depth increases, the performances of R3D and
R(2+1)D are improved significantly. However, as illustrated in
the last block of Table I, the very deep R3D-152 and R(2+1)D-
152 declined markedly because of overfitting. It was argued that
the number of video samples of CSL-500 was not sufficient for
optimizing the two heavy networks.

2) Ablation Study of STCA: The impact of the self-attention
layer in CTA was first analyzed by comparing the self-attention
with both multiscale and single-scale temporal convolution set-
tings. As given in Table II, the self-attention operation for global
temporal modeling performs the best among all settings. It was
believed that the global temporal modeling of self-attention was
more effective than the local modeling of temporal convolution

in SLR, which is more related to long-range motion patterns.
Although the absolute improvement of the self-attention method
was minimal (+0.21), the increased accuracy compared to the in-
cremental benefits from the conventional multiscale convolution
and single-scale convolution was appreciable (i.e., 0.21 versus
0.58). Accordingly, over 36% of the overall improvement of
CTA (see Table V) could be beneficial for future investigations
of similar problems.

Then, the effects of different positions of the self-attention
layer in CTA were compared. As given in the last two rows of
Table II, placing the self-attention operation in the middle (M) of
the MLP to form a bottleneck structure was more efficient (50 M
versus 110 M) with slight performance loss than placing it at the
last (L). Therefore, the self-attention operation was placed in the
middle of the MLP in CTA for subsequent experiments.

The impact of the reduction ratio r was also analyzed, which
was the reduction ratio of CTA. It can allow for the control
of the number of parameters of the temporalwise MLP and
self-attention operation. Table III reveals that the performance of
SCTA does not improve obviously when the network complexity
is further increased, which is consistent with [8]. This was
likely because of the overfitting of the channel-temporal relation.
Therefore, we set r=16 for our subsequent experiments for the
tradeoff between speed and accuracy.

The adopted multipath convolution layer of STA was also
compared for generating multiscale STA descriptors with the
single-scale setting and self-attention. As given in Table IV, the
multipath setting surpasses the single path (+0.08). It was argued
that multiscale convolution filters enhance the generalization
performance by combining spatiotemporal information at dif-
ferent scales. The advantage of the multiscale convolution over
the single-scale convolution method was not very obvious, but it
is worth noting that the multiscale convolution complements the
local temporal component, and the relative improvement is 42%
(0.08/0.19) of the overall performance improvement of STA (see
Table V). In addition, although self-attention performs well in
CTA, its use in STA brings about a sharp increase in complexity
(from 50 M to 215 M) and, therefore, results in overfitting (the
performance of 96.36 is even lower than the original R(2+1)D).
Therefore, self-attention was excluded in STA.

Three settings of the STCA based on R(2+1)D-50 were then
compared: STA only, CTA only, and their combination in a
different order. In Table V, both the STA and CTA can improve
test accuracy on CSL-500. It can also be seen that incorporating
both submodules performs better than STA or CTA only. It was
argued that this was because the two components were combined
to capture different attention descriptors along spatial, temporal,
and channel dimensions, especially the complimentary local and
global temporal attention operations in CTA and STA. In addi-
tion, it can also be seen that the order of these two submodules did
not count (such a slight performance difference is negligible).

The effect of the inner residual connection was also explored
in the STCA, and Table VI lists the performance improvement.
It was argued that this was because it facilitates the optimization
process and preserves the original features, which was not
useful for the current layer but may be helpful for the next
layers.
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Fig. 4. Training process of R(2+1)D-50 with and without STCA.

Finally, the generalization performance of STCA with differ-
ent backbones was explored. In Table I, one can also discover
the consistent and noticeable performance improvement of all
R3D and R(2+1)D networks of different depths with STCA.
Among them, R(2+1)D-18 incorporated with STCA can obtain
comparable performance to deeper R(2+1)D-34 with negligible
additional overheads, and a similar phenomenon also existed in
other pairs. As illustrated in Fig. 4, with the whole STCA, both
training loss and test loss are reduced faster, and the test loss
converges to a lower value when R(2+1)D-50 was embedded
with STCA, which demonstrated that the network can be opti-
mized to be faster and better. It was argued that this was because
STCA can more capture discriminative spatiotemporal features
related to sign language and further improve the representation
capacity.

3) Comparison With Other SE-Like Attention Modules: We
first compare our STCA with two famous attention modules
called SE [8] and CBAM [37], which are first designed for
image-based tasks. For a fair comparison, we insert these two
lightweight modules into each residual block of R(2+1)D-50
using the same strategy as STCA. As given in Table VII, SE
and CBAM can also improve the performance on CSL-500. We
argue that the channel attention of both SE and CBAM can make
the network concentrate on the discriminative motion patterns,
and the spatial attention in CBAM can further make the network
focus on the relevant spatial regions. However, their performance
hit a bottleneck without exploiting temporal attention reasoning.
In contrast, we propose to generate temporal attention by intro-
ducing self-attention operations for global temporal attention
and temporal convolution layers for local temporal attention in
our STCA.

According to the description in [38], we implement W3 by
ourselves. To examine the pure effect of attention modules,
we exclude the proposed mature feature guided regularization
(MFR) in [38]. As given in Table VII, our STCA performs better
than W3 (97.45 versus 97.30), with other settings being the same.
We argue that the complementary global temporal modeling of
self-attention in CTA, multiscale local temporal modeling in
STA, and inner residual connections account for the performance

improvement. In addition, our STCA is of lighter weight than
W3 when combined with R(2+1)D (50 M versus 110 M), which
also demonstrates the efficiency of placing the self-attention
layer in the middle of the MLP to form a bottleneck structure.

D. Comparison With the State-of-the-Art

1) Comparison With the State-of-the-Art on CSL-500: First,
we compare our proposed method with previously reported
methods on CSL-500 published in [31]. Hand-crafted fea-
tures [64], [67] are implemented in [31]. C3D [18] support
vector machine (SVM) first splits the video into short-range
clips via the sliding window and then forward the feature vectors
of these clips into an SVM. Attention-based C3D [31] adopts
a spatial attention mask for selected joints and a temporal at-
tention module to model the attention of different clips when
combining clip-level predictions into a video-level prediction.
The implementation details of the above methods are described
in [31].

Other 3-D and (2+1)D CNN-based approaches were also im-
plemented. For the 3-D baselines, we included deformable 3D-
ResNeXt-101 [58], which achieved state-of-the-art in the Jester
dataset, I3D [19], which inflated the pretrained 2-D convolution
filters in the framework of Inception [5], and SlowFast [22].
For the (2+1)D method, we implemented S3D [47], a separate
spatial and temporal modeling version of I3D.

As given in Table VIII, STCA-R(2+1)D achieved the best
result on CSL-500. STCA-R(2+1)D not only exceeded hand-
crafted feature-based methods but also surpassed the above state-
of-the-art 3-D and (2+1)D methods. This result demonstrated
the effectiveness of R(2+1)D, which decomposed spatial and
temporal modeling, and STCA, which made the network extract
discriminative spatiotemporal features for SLR.

2) Comparison With the State-of-the-Art on Jester: Al-
though sign language, which involves both manual and nonman-
ual components, is not the same as hand gestures, we can also
use the Jester dataset to evaluate the generalization performance
of our proposed method. We compared our proposed STCA-
R(2+1)D with the state-of-the-art methods on the Jester dataset.
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TABLE VIII
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON CSL-500

TABLE IX
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON JESTER VALIDATION SET

TABLE X
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON THE EGOGESTURE DATASET

In testing, one clip per video is used for fair comparison.

The implementation details were similar to those of CSL-500.
As given in Table IX, the modified C3D [18] that removes the last
three FC layers achieves 92.2% accuracy. Deeper 3-D or (2+1)D
CNNs, including 3D-ResNet101 [21], 3D-ResNeXt101 [21],
S3D [47], and SlowFast [22] (SlowFast was implemented by
ourselves) based methods, also obtain excellent results with-
out overfitting. TRN [48], TSM [49], and STM [50], which
proposed temporal reasoning modules, also achieve impressive
performance. Zhang et al. [58] proposed utilizing deformable
convolution in the framework of 3-D-ResNeXt101 and achieved
state-of-the-art, i.e., 97.10% accuracy. Our STCA promotes
the R(2+1)D and achieves 97.05% accuracy, which was also
a competitive result.

The confusion matrix using STCA-R(2+1)D is shown in
Fig. 5, and most of the gestures were recognized correctly.

However, the pair “turning hand clockwise” and “turning hand
counterclockwise” was much more confused than other pairs
because there were many incorrect labels [58] .

3) Comparison With the State-of-the-Art on EgoGesture: We
finally compared our proposed STCA-R(2+1)D with the state-
of-the-art methods on the EgoGesture dataset to further evaluate
the generalization performance of our proposed method. As
given in Table X, TSM [49] with W3 and MFR [38] surpasses
not only reported methods, including C3D [18], I3D [19], and
3D-ResNeXt [68] but also results implemented by ourselves,
including R(2+1)D [44] and SlowFast [22], which demonstrates
the effectiveness of spatial, temporal, and channel attention.

In contrast, our STCA further improved the performance
of R(2+1)D and achieved comparable results of 94.0% Top1
validation accuracy and 94.3 % Top1 test accuracy. Although
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Fig. 5. Confusion matrix on Jester validation set.

Fig. 6. Visualization of attention map.

our best STCA-R(2+1)D required more computational resources
than [38] during the inference process (76 G versus 36 G),
our training process was one stage directly without the extra
complicated MFR stage in [38].

E. Visualization and Interpretation

We finally visualized our STCA-R(2+1)D using saliency
tubes [69] to present whether our network focuses on the main
points in frames (spatial) over time (temporal). As illustrated in

Fig. 6, although all three R(2+1)Ds can focus on the regions of
interest evolving over time, the spatial regions when R(2+1)D is
incorporated with CBAM or STCA were not only smaller than
the plain R(2+1)D but also more related to hands and arms. We
argue that this is because of the spatial attention in both CBAM
and STCA to alleviate the interference from the redundant spatial
information and further make the useful regions attended.

We also observed that our STCA tended to attend hands and
arms with more temporal dynamics than CBAM. We argue that
this is because of both local and global temporal modeling in
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STCA. For instance, in the hand gesture “Swiping left,” our
STCA was not activated in the beginning when the gesture was
not happening but was rapidly activated when the gesture was
ongoing.

V. CONCLUSION

In this article, we propose to adopt R(2+1)D with STCA for
isolated SLR. We demonstrate that R(2+1)D, which separately
models spatial appearance and temporal evolution, greatly ex-
ceeds joint spatiotemporal modeling in SLR. Our STCA com-
bines SE-like attention with self-attention and simulates the
perception of human vision to concentrate on useful regions
and extract the most discriminative motion patterns evolving
over time. By inserting STCA into R(2+1)D, we alleviate the
interference from the redundant information in sign videos and
achieve the state-of-the-art performance on the CSL-500 dataset
and competitive performance on the Jester and EgoGesture
datasets.

In combination with other methods, such as model com-
pression, the proposed method can be run not only on high-
performance computers but also on mobile devices. In the future,
we will focus on real-world applications of our STCA on embed-
ded devices with limited computational capacity. In addition, the
fusion of multimodality for SLR without sacrificing efficiency
will also be involved.
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