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Abstract— Cell counting is an essential step in a wide variety of
biomedical applications, such as blood examination, semen assess-
ment, and cancer diagnosis. However, microscopic cell counting
is conventionally labor-intensive and error-prone for experts, and
most of the existing automatic approaches are confined to a
specific image type. To address these challenges, we propose
a new interactive dual-network framework for automatic and
generic cell counting. In this framework, one deep learning
model (counter) is trained to regress a density map from a given
microscope image. The number of cells in that image can be
estimated by performing integration over the regressed density
map. Another network (ground truth generator) is employed to
dynamically generate suitable ground truth based on the cell
samples and the dot annotations to serve as the supervision for
training the counter. The interactive process to obtain the optimal
model is achieved by jointly training the counter and ground
truth generator iteratively. Moreover, we design a hierarchical
multi-scale attention-based architecture to act as the counter in
the proposed framework. This architecture is crafted to efficiently
and effectively process multi-level features, enabling accurate
regression of high-quality density maps. Evaluation experiments
on three public cell counting datasets demonstrate the superiority
of our method.

Note to Practitioners—This paper is motivated by the need
for advanced healthcare in the deep learning era. As a routine
assessment procedure in healthcare settings, cell counting usually
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suffers from poor accuracy and inefficiency. We provide a
solution to ameliorate the situation by developing a deep learning-
based framework for automatic cell counting. After being trained
in an end-to-end manner, the dual-network system is able to
estimate the number of cells from the given microscopic images
more accurately than existing methods. Additionally, this method
is robust in various scenarios, such as calculating cell populations
in suspension and cells in tissues. In the future, the presented
pipeline has the potential to be implemented by biomedical
practitioners who are non-expert in programming via wrapping
it into a graphical user interface.

Index Terms— Automatic cell counting, healthcare automation,
deep learning in healthcare, interactive dual network, density
map.

I. INTRODUCTION

CELL counting in microscopic analysis can provide a
critical indicator for medical diagnosis and treatment.

For instance, in the Kleihauer–Betke test, fetal-maternal hem-
orrhage is quantitated by counting the fetal and maternal red
blood cells [1]. However, counting cells manually under the
microscope is tedious, labor-intensive, and prone to subjective
errors, especially in cases of high cell density, occlusions in
microscopic images, and large inter-individual morphological
variation of cells. Automated cell counting methods have been
developed to reduce human involvement. However, most of
the conventional automated counting methods are tailored to
specific cell images, and the accuracy is also hindered by
the inherent drawbacks in crowded cell samples [1], [2], [3].
Therefore, a generic cell counting system is needed to offer a
computer-aided diagnosis with sufficient accuracy.

In recent years, medical diagnostics has witnessed sig-
nificant advancements with the development of artificial
intelligence technology. Deep learning-based methods have
emerged as powerful tools in various medical applications,
including lesion detection in dental care [4], identification of
breast cancer [5], and malaria detection [6]. Deep learning
technology has also demonstrated potential superiority for cell
counting [7], [8], [9], [10].

Based on their working principle, the cell counting methods
can be grouped into detection-based and regression-based
categories. The number of cells in a microscopic image can
be obtained by detecting each cell instance in detection-
based counting, as illustrated in Fig. 1(a). However, object
detection in dense images is a nontrivial task, and the accu-
mulative errors can significantly damage the accuracy of cell
counting. Moreover, most deep learning-based object detection
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Fig. 1. The workflow of automatic cell counting. (a) Detection-based method.
This pipeline acquires the cell count by identifying the position of individual
cell instances, which can be intricate, especially for counting cells with a high
density. (b) Regression-based method. In this paradigm, the network regresses
a density map for each image, with each pixel indicating the probability of
a cell’s presence. The summation of these pixel values in the density map
yields the cell count.

algorithms are computationally expensive and require time-
consuming annotations (e.g., labeling with bounding boxes)
[11], [12]. On the other hand, regression-based counting
does not require prior detection or segmentation of individual
objects in a crowded cell image. Instead, it casts the counting
task as regressing a spatial density map to output the integral
as the number of instances in the given image, as shown
in Fig. 1(b). Furthermore, the regression-based pipeline only
needs weak annotation, usually a dot or a blob for each object,
which is much more cost-efficient.

Owing to its superior performance, density map-based
counting has emerged as the mainstream direction over the
past few years, especially for counting dense cells. Since
the density map is an intermediate representation, it needs
to generate the ground truths for supervised learning from
the given dot annotations. In previous studies, the ground
truths were usually handcrafted by blurring the dots with a
fixed Gaussian filter. Although existing deep learning-based
methods have brought automatic cell counting a big step
forward, the use of handcrafted ground truths in these pipelines
limits the potential for further reduction of counting errors.

In this paper, we present an adaptive density map-based
framework to improve the accuracy of automatic cell counting
in microscopic analysis. Our method highlights the importance
of the density map patterns during the training of the counter,
which was overlooked in previous approaches. We update
the ground truth generation paradigm for density-based cell
counting using a deep learning-based generator. Furthermore,
a novel counting model is developed to regress high-quality
density maps for the given cell images. In summary, the main
contributions of this study are as follows:

1) We propose an interactive dual-network framework for
automatic cell counting. In this framework, one network
acts as the cell counter, while the other is employed to
generate the ground truth density maps for the supervised
learning of the counter. Through joint training with the
counting network, the ground truth (GT) generator can
adjust the ground truth maps based on the feature of the
input images. Therefore, the density representations with

the minimum cell count error can be obtained. To the best
of our knowledge, this is the first foray into reducing cell
count error through adaptive density maps.

2) We design a hierarchical multi-scale attention-based
counter. In this architecture, multi-level features can be
processed effectively and efficiently for accurate density
map regression.

3) We develop a GT generator based on a convolutional neu-
ral network (CNN). The generator can produce suitable
ground truth maps based on the features extracted from
the cell samples.

4) Our method outperforms the state-of-the-art on two stan-
dard public benchmarks, i.e., the VGG [3] and MBM
datasets [13], and is on par with competitors on the ADI
image set [13], verifying its effectiveness.

The remainder of this article is organized as follows.
Section II reviews the related works. The proposed cell count-
ing framework is presented in Section III. The experimental
setup and results are reported in Section IV and Section V,
respectively, followed by a discussion in Section VI. Finally,
Section VII concludes this work.

II. RELATED WORK

This section reviews the recent advances in cell counting
methods, followed by a brief discussion of the attention
mechanism.

A. Cell Counting by Detection

Detection-based approaches rely on acquiring the location
of each cell instance in the microscopic image for counting.
Xing et al. [14] reported a Ki-67 counting algorithm based on
detection and online dictionary learning to automate the grad-
ing of neuroendocrine tumors. Chowdhury et al. [6] modified
the YOLO framework [11] to complete blood cell count and
malaria detection. Arteta et al. [15] used a tree-shape model
to overcome the challenge of detecting and counting cells in
overlapping scenarios. Kassim et al. [16] designed a cascaded
pipeline for red blood cell detection and counting. In their
approach, a U-Net [17] was first employed to produce clusters,
proceeding with the Faster R-CNN [18] performing the cell
detection within the connected components. Alam et al. [19]
proposed a method to count blood cells based on YOLO [11]
and then alleviated the repeated counting problem using the
K-nearest neighbors and the intersection of the union. The
counting accuracy of the above methods depends largely on
the cell detection results. However, the cell morphology varies
significantly, affecting cell detection accuracy. Moreover, the
image acquisition conditions can also change the image fea-
tures, posing further challenges to the detection. Therefore,
the detector needs to be carefully designed and this is not a
cost-effective and reliable way to count.

B. Cell Counting by Regression

Lempitsky and Zisserman [3] conducted pioneering research
for counting cells by regression. They developed a flexible
learning system to accurately and efficiently count objects
in various domains by exploiting spatial features. Similarly,
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Arteta et al. [20] reported an interactive framework to rapidly
count cell instances in crowded scenarios by leveraging ridge
regression. Fiaschi et al. [21] estimated the density map by
averaging the predictive patches, which were output by the
regression forest based on the input image. In [22], several
random forest algorithms were trained in parallel to determine
probability maps individually, and then the probability maps
were averaged to obtain the final estimated map and cell count.

More recently, deep CNN-based algorithms have been
developed to enhance the quality of the predicted density map
in an end-to-end manner. In [23], a regression framework
using different trendy models, such as AlexNet [24] and
ResNet [25], as backbone was proposed to infer the number
of cells in a given microscopic image. Xie et al. [26] designed
and compared two alternative CNNs implemented end-to-end
for probability map regression. Their methods surpassed the
previous counterparts in synthetic images regarding counting
performance and could be directly transferred to real cellular
data with a slight loss in accuracy. Subsequently, He et al.
[9] improved the fully convolution model proposed in [26] by
concatenating the spatial feature encoded in the shallow layers
to the decoding phase and then deeply guided the training of
the network with hierarchical loss to reduce the counting error.

To minimize the error, Paul et al. [13] proposed a redun-
dant counting approach that derived the accurate count
by averaging the results obtained by the sliding windows.
Rodriguez-Vazquez et al. [7] utilized the adversarial training
technique to help the generator regress high-quality proba-
bility maps and then achieved positioning and counting on
the resulting maps with the Laplacian of Gaussian operator.
While other systems focused on 2D images, SAU-Net [10],
a universal framework, was proposed for both 2D and 3D
cell counting. In addition, a custom batch normalization block
was embedded into the SAU-Net to enhance its performance
on small datasets. Although the refinement of density maps
has yet to be investigated in cell counting, the pattern of
density maps has been proved critical in counting crowded
populations [27].

C. Attention Mechanism

The attention mechanism is a technique that mimics the
principle of biological cognition to focus the algorithms’
attention on the essential parts of the data. In computer vision,
this technology has been applied in various visual recogni-
tion tasks, including segmentation, detection, and generation
[28], [29], [30]. A typical implementation of the attention
mechanism is the squeeze-and-excitation module [31], which
attempts to learn a group of channel-wise weights to refine
the corresponding feature maps. Woo et al. [32] introduced an
attention module to polish the feature maps in both channel
and spatial dimensions. Transformer [33], [34] based on the
self-attention mechanism has also achieved impressive results
in visual representation recently. However, these transformer-
based pipelines often face challenges such as a lack of
sufficiently large datasets and high computational costs.

III. METHODOLOGY

In this section, we present the novel cell counting framework
in which the GT generator and cell counter are trained jointly.

A. Problem Formulation

Given an input image X ∈ RH×W×C , the corresponding
density map Ŷ ∈ RH×W (where RH×W is the abbreviation
of RH×W×1) can be obtained by the regression function and
represented as:

Ŷ = Fc(2;9(X)), (1)

where 2 is the parameter vector of the mapping function
Fc(·) and 9(X) is the local features of the input image. The
number of cells in the image can be calculated by summing up
Ŷ (h, w), which indicates the object existence probability in the
X (h, w). In the deep learning pipeline, the density is directly
regressed from the image. Therefore, Equation (1) would be
simplified to:

Ŷ = Fc(2; X), (2)

The critical factor for the success of this framework is
to train a deep learning-based mapping function Fc(2) to
produce a correct density map Ŷ for a given region.

To lower the labor cost, the center of cell instances is
annotated with a dot to form a dot map. The density map,
namely a heat map of the cell distribution, works as an
intermediary ground truth for supervised learning since it is
hard for the deep learning model to recognize cells directly
from a set of sparse dots. The previous study usually generated
ground truths Y ∈ RH×W by convolving the dot map D ∈
RH×W with a Gaussian kernel:

Y = D ∗ G(x, y), (3)

where G(x, y) is a bivariate Gaussian kernel with a handcrafted
bandwidth. Under the supervision of the handcrafted ground
truths, it can effectively train a deep learning-based density
map estimator. However, directly computing a constant map
from the dot map overlooks the importance of ground truth,
which could significantly impact the counting performance.
This is because the background and texture of cell images can
vary greatly depending on the acquisition scenario. Therefore,
we would take a step towards exploiting the properties of
samples and attempt to generate a sample-based ground truth
map. In practice, a deep learning network would act as the
generator Fg(·) to produce the ground truth:

Y = Fg(8; X, D), (4)

where 8 is the parameters of Fg(·). The cell samples and the
corresponding dot maps are the input of the generator. This
ground truth generator is jointly trained with the cell counter
in the dual-network framework. Therefore, the ground truth
density map is dynamically adjusted according to the input
cell samples to reduce the counting error interactively.

B. Overall Framework

Based on the conception mentioned above and inspired by
[27], we propose an interactive dual-network framework for
automatic cell counting, as shown in Fig. 2. In this system,
one network called counter (inside the blue dashed box) acts
as a mapping function Fc(2) to regress a density map from
the input image for count estimation. The other one (inside the
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Fig. 2. The proposed interactive dual-network framework for automatic cell counting. In the training stage, the cell samples are input to the counter network
to regress the estimated density map. Concurrently, the corresponding cell exemplars are extracted and fed to the GT generator to adjust the ground truth
density map dynamically. The trained counter is employed to infer density maps for unseen inputs in the inference phase.

green dashed box) is used as GT generator Fg(8) to modify
ground truth iteratively.

In this pipeline, the role of the GT generator is to aid in
the supervised learning of the counter since it can adjust the
ground truth density maps according to the feature of input
cell samples. Throughout the whole training phase, the counter
and the GT generator interact iteratively by minimizing the
element-wise mean squared error loss L between the estimated
density maps

{
Ŷi

}N
1 and the corresponding ground truth den-

sity maps {Yi }
N
1 . The loss function is expressed as:

L =
N∑

i=1

∥∥Ŷi − Yi
∥∥2
+ λ(∥2∥2

+ ∥8∥2)

=

N∑
i=1

∥∥Fc(2; X i )− Fg(8; Si , Di )
∥∥2

+ λ(∥2∥2
+ ∥8∥2), (5)

where S ∈ RM×M×C denotes the cell exemplar, and λ is a
coefficient that modulates the l2 penalty to alleviate overfitting.

C. Multi-Scale Attention-Based Counter for Cell Counting

In order to obtain an accurate heat map of the distribution
of cell instances, a superior density map estimator should
be carefully designed to encode the spatial information. The
encoder block constructed with convolution units is reported
to be a powerful feature extractor in various tasks [24], [35].
On the other hand, the encoded information needs to be
resolved to acquire the full-size map in the decoding process
[17], [36]. Therefore, a deep CNN-based encoder-decoder
structure is employed to be the basic backbone of the counter.
As shown in Fig. 3, the features of different reception fields
are captured in each encoder via a convolution operation and
a dilated one and then concatenated along the channel dimen-
sion. Compared with ordinary convolution, dilated convolution
has a larger receptive field without extra computational cost
[37]. Thus, spatial features from different receptive fields can

be encoded in a computation-efficient manner. Each decoder
is composed of two concatenated convolution-normalization-
ReLU operations.

A straightforward implementation of an autoencoder-based
counter is to connect Encoder 1 and Decoder 1 directly.
However, in the bare encoding-decoding pipeline, the decoder
receives and processes all the feature units from the encoder
indiscriminately, which is inefficient and unsatisfactory. For
the decoder to better interpret the feature representation,
a channel-spatial-attention module is built by cascading a
squeeze-and-excitation network [31] and a spatial attention
component. The attention module is applied to refine the
encoded features by assigning a learnable weight to each
element, as illustrated in Fig. 4.

The counter consisting of only one encoder-decoder can
only capture local low-level features of the input image, which
is insufficient to regress a high-quality density map. Therefore,
Multiple encoder-decoder pairs are employed to process multi-
scale feature maps in the proposed counter to exploit the
multi-level information fully. These encoders are cascaded
via max pooling, with transposed convolution operations as
upsampling between corresponding decoders. After multiple
max pooling processes, the size of the feature map would be
reduced, but each element would perceive more information.
Therefore, in this hierarchical autoencoder-based structure, the
shallow layer (encoder1-decoder1) captures spatial context,
while the deeper counterpart (encoder3-decoder3) learns high-
level semantic features. The counter can estimate a relatively
precise density map by fusing these multi-level features. The
overall architecture of the proposed multi-scale attention-based
counting pipeline is depicted in Fig. 3.

D. Dynamic Adaptive Density Map Generation

Cells exhibit diverse morphologies. As a result, the ground
truth that reflects the characteristics of a given microscopic
image is preferred to provide better supervision for training
the counting network. Therefore, our proposed framework
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Fig. 3. The proposed multi-scale attention-based encoding-decoding network for density map regression. [Conv2D, k × k, N ] represents a 2D convolution
operation with the output channel number of N and the kernel size of k × k. The dilated convolution operation (with a dilation of 2) and the transposed
convolution operation also have the same description. The stride size of the convolution and dilated convolution is set to 1, while the stride size of the
transposed convolution operations is 2. The kernel size and stride of the max pooling in our framework are 2× 2 and 2, respectively. The padding operation
is used to adjust the output of the convolutions to the desired size.

Fig. 4. The schematic diagram of the channel-spatial-attention module.
FC refers to the Fully Connected layer, which is implemented by the
convolution operation with a kernel of 1× 1 in the counting network.

employs a deep CNN as the GT generator, benefiting from
its superior nonlinear representation capabilities. Specifically,
the CNN extracts features from the input images and produces
corresponding ground truth density maps to supervise the
training of the cell counter. The generator includes three
components: the feature extractor, the fusion block, and the
refiner, as shown in Fig. 2. The feature extractor captures
the spatial information of the input cell samples and then
outputs the corresponding feature vectors. Inspired by [38],
these vectors are then modulated by a normal distribution in
the fusion module to refine feature vectors by leveraging a
re-parameterization loss Lr , which is defined as:

Lr =
α

2

d∑
i=1

(( f i
1 )2
+ ( f i

2 )2
− ln( f i

2 )2
− 1), (6)

where d is the dimensionality of the feature vectors, f i
1 and

f i
2 represent the i-th component of the mean vector and

logarithmic variance vector, respectively. The parameter α is
the weight of the loss and is set to 0.05. Next, the processed
feature representations are fed into the refinement module to
dynamically generate a refined kernel. Inspired by the kernel-
based strategy [27], the refined kernel is normalized and added
to a new blank map, serving as the target for the training of
the counting network. The normalization process is defined as
follows:

k̃i, j =
ki, j −min

{
(k0,0), · · · , (kP−1,P−1)

}
+ ε

i=P−1, j=P−1∑
i=0, j=0

[
ki, j −min

{
(k0,0), · · · , (kP−1,P−1)

}
+ ε

] ,

(7)

where ki, j and k̃i, j represent the values of the position (i, j)
before and after normalization, respectively, in a kernel of size
P × P . ε is a minimal value used to prevent the occurrence
of outliers. Each kernel on the ground truth corresponds one-
to-one with a cell in the microscope image, ensuring that the
integral of the ground truth equals the number of real instances.
The centroid coordinates from the dot maps are retrieved
to center the kernels at the accurate locations, as shown in
Fig. 2. Given an image and dot map pair {X, D} with T0

annotated coordinates
{
C j

}T0

1 in D, the corresponding ground
truth density map Y , can be expressed as follows:

Y = Fg(8; S, D) =

hT0 ,wT0∑
h1,w1

K̃h j ,w j , (h j , w j ) ∈
{
C j

}T0

1 , (8)
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TABLE I
THE ARCHITECTURE OF THE GT GENERATOR

where K̃h j ,w j is the normalized kernel centered on the coor-
dinate (h j , w j ) on the ground truth map. The ground truth
density map is updated to minimize the mean squared error
between the output of the generator and that of the counter,
as calculated by Equation (5). This is achieved through the
interactive training process between the two networks, where
the generator produces a refined ground truth, and the counter
predicts an estimated density map based on that updated
ground truth.

Explicitly, the architecture details of the GT generator
are summarized in Table I. Conv2D-ReLU refers to the 2D
convolution operation followed by ReLU activation. If not
specified, the kernel size and stride of the Conv2D are 3×3
and 1, respectively. FC1 and FC2 have an identical input,
which is the flattening of the output of the previous layer. The
output of FC1 is assumed to be the mean vector of the feature
space, while that of FC2 represents the variance vector. The
number of neurons in the output layers of both the FC1 and
FC2 is set to P2. The fusion operation is defined as f1 + e f2 ,
where f1 and f2 are the outputs of FC1 and FC2, respectively.
The output of the fusion operation is reshaped into the shape
of the kernel and then input to the refiner for refinement.

E. The Training and Inference Processes

During training, the microscopic images are fed into the
counter, while the corresponding cell exemplars are cropped
and inputted to the GT generator. In this procedure, the
centroid coordinates of the cell instances provided by the dot
maps are used to generate the ground truths and aid the system
in extracting cell samples automatically and accurately from
the full-size image. Once training is complete, the generator
is stopped, and the trained counter is executed to predict a
high-quality density map for an unseen input cell image in the
inference stage. Integration over the predicted density map is
then applied to approximate the number of cells.

The joint training process and inference procedure of the
proposed system are encapsulated in Algorithm 1.

Algorithm 1 The Joint Training Process and Inference Proce-
dure of the Proposed Framework

Input: The training cell images {X i }
N
1 and the corresponding

dot maps {Di }
N
1 ; the new set of microscopic images{

X ′i
}N ′

1 .
Output: The trained cell counter Fc(2) and the trained GT

generator Fg(8); the inferred density map
{

Ŷi
′
}N ′

1
and

estimated count
{
ĉi
′
}N ′

1 .

# The Joint Training Process
1: Initialize the counter Fc(2) and the GT generator Fg(8).

2: for all epoch = {1, . . . , epochmax } do
3: for all i ∈ (1, N ) do
4: Crop cell exemplar Si from the X i .
5: Feed Si and Di into Fg(8).
6: Feed X i into Fc(2).
7: Yi ←− Fg(8; Si , Di ).
8: Ŷi ←− Fc(2; X i ).
9: Update Fc(2) with the loss calculated by

Equation (5).
10: Update Fg(8) with the loss calculated by

Equation (5) and update the feature extraction part
of Fg(8) with the loss computed by Equation (6).

11: end for
12: end for
13: return the trained Fc(2) and Fg(8).

# The Inference Process
14: Initialize the Fc(2) with the trained parameters.
15: for all i ∈

(
1, N ′

)
do

16: Feed X ′i into Fc(2).
17: Ŷi

′
←− Fc

(
2; X ′i

)
.

18: Obtain ĉi
′ by summing up the elements in Ŷi

′ .
19: end for
20: return

{
Ŷi
′
}N ′

1
,
{
ĉi
′
}N ′

1 .

IV. EXPERIMENTAL SETUP

In this section, we provide a comprehensive description
of the datasets used for the experimental evaluation of the
proposed framework, as well as the implementation details.

A. Dataset Description

The proposed method are evaluated on three publicly avail-
able benchmarks widely used for automatic cell counting: the
synthetic bacterial cell dataset, the bone marrow cell image set,
and the human subcutaneous adipose tissue database. Details
of these datasets are provided in Table II.

1) Synthetic Bacterial Cell Dataset (VGG): the synthetic
bacterial cell dataset was produced by Lempitsky et al. [3]
using a simulation platform developed by Lehmussola et al.
[39]. The provider of this database is the Visual Geometry
Group of the University of Oxford. This dataset is also
called VGG. This dataset consists of 200 synthetic RGB
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TABLE II
DATASET DETAILS

fluorescent microscopic images of size 256×256, containing
35192 objects to simulate bacterial cells. The synthetic bac-
terial cell dataset is designed to increase the difficulty of cell
counting by generating clustered and overlapping bacteria,
as well as simulating images with varying focal distances.

2) Bone Marrow Cell Dataset (MBM): the bone marrow
cell dataset was introduced by Paul et al. [13] by modifying
the original version reported in [40]. These Hematoxylin and
Eosin stained samples were collected from healthy human
bone marrow. This database has 44 RGB images of 600×600
pixels, accommodating 5553 cells. These cells are not easy
to recognize due to the inhomogeneous background in these
microscopic images.

3) Human Subcutaneous Adipose Tissue Dataset (ADI):
the samples in the human subcutaneous adipose tissue dataset
were acquired from the Genotype-Tissue Expression Consor-
tium (GTEx) [41] and then down-sampled to 150×150 pixels
by Paul et al. [13]. This sample set has 200 RGB images with
29684 instances in total. In addition to significant intra-class
variation, the cells in these images are tightly packed, making
the counting extremely challenging.

B. Implement Details

For a fair comparison with the competitors, 50 samples were
randomly selected from the VGG and ADI datasets for training
in each experiment, and the rest were used as the test set.
Similarly, only 15 samples from the MBM were utilized for
training the networks, and the remaining were used for testing.
During the training, multiple processes were performed to
augment the data to avoid overfitting and lower the counting
errors. Firstly, each input image was randomly cropped to
87.5% of its original size. In this process, the height and
width of the obtained new sample were rounded down to
be divisible by eight because there were three cascaded max
pooling operations with a kernel size of two in the counting
network. Subsequently, the cropped images were randomly
flipped horizontally and vertically, proceeding with being
rotated with an angle of N × 90◦(N = 1, 2, 3, 4). The same
procedures were carried out in the corresponding dot map.
The size of the cell exemplar was set to 24 × 24 pixels for
VGG images and 32× 32 pixels for MBM and ADI datasets.

The kernel size of each instance on the ground truth was
15×15 pixels. In addition, to accommodate the counter while
maintaining the real number of cells, each image-dot-map-
pair in the test set of ADI was padded to 152×152 pixels,
respectively.

According to the size of the training set in each dataset, the
batch size was set to 32 for VGG and ADI, respectively, and
8 for MBM. The Adam approach was utilized to optimize the
models [42]. The weight decay for the optimizer was set to
0.0001 to alleviate overfitting. Inspired by the previous study
[43], we employed a learning rate scheduler that combined
cosine annealing with warming up for joint training. The initial
learning rates were set to 0.0005 for the counter and 1e-6 for
the GT generator. We trained for 2000 epochs, including a
warming-up epoch of 10. Each set of experiments was repeated
five times, and the average testing results were taken as the
performance of the method. We conducted a grid search to find
optimal hyperparameter settings based on performance on the
validation datasets. The proposed pipeline was implemented in
PyTorch and supported by Python. The training was conducted
on one Nvidia RTX3090 GPU with 24GB memory and an Intel
Xeon Platinum 8375C CPU.

V. EXPERIMENTAL RESULTS

The experimental results evaluating the proposed framework
are reported in this section. We first specify the evaluation
metrics. Then, we compare the proposed approach with state-
of-the-art methods and detection-based counterparts regarding
cell counting accuracy. Ablation studies are also employed to
verify the effectiveness of the designs of our system.

A. Evaluation Metrics

The mean absolute error (MAE) between the real count
and the estimated cell number was measured to evaluate the
performance of the methods. Explicitly, the MAE can be
defined as:

M AE =
1
N ′

N ′∑
i=1

∣∣ĉi
′
− c′i

∣∣, (9)

where N ′ is the number of samples in the test set. ĉi
′ and c′i

refer to the estimated cell count and real cell count of the i-th
sample, respectively. The estimated cell count ĉi

′ is calculated
as follows:

ĉi
′
=

H−1∑
h=0

W−1∑
w=0

(Ŷi
′
)h,w, (10)

where (Ŷi
′
)h,w is the element value at position (h, w) of the

i-th predicted density map. Similarly, the real cell count c′i can
be computed by:

c′i =
H−1∑
h=0

W−1∑
w=0

(Y ′i )h,w, (11)

where (Y ′i )h,w is the value at position (h, w) of the i-th ground
truth density map.
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TABLE III
COMPARING WITH STATE-OF-THE-ART METHODS ON STANDARD CELL COUNTING DATASETS

B. Comparison With the State-of-the-Art Methods
The proposed method is compared with state-of-the-art

approaches in terms of cell counting accuracy on three public
datasets: VGG, MBM, and ADI. The mean and standard
deviation of the evaluation results are summarized in Table III.
Overall, the proposed framework outperforms the previous
methods on both the VGG and MBM datasets in terms of
MAE and achieves competitive results on the ADI dataset.
On the VGG dataset, the proposed pipeline surpasses the
leading competitor by a significant margin (9.5%) in counting
errors (1.9 vs. 2.1). Likewise, we renewed the record for the
MBM dataset (4.0 vs. 4.2), setting an advanced state-of-the-art.
As for the ADI dataset, although our approach doesn’t obtain
the best performance, it still stays at the forefront among all
the competitors.

The one that achieves the lowest counting error (8.7) on
the ADI dataset is a two-stage counting pipeline presented by
Ciampi et al. [8]. However, this method performs relatively
poorly on the other two benchmarks, lagging far behind
our approach in terms of MAE (2.5 vs. 1.9 on VGG and
5.7 vs. 4.0 on MBM). Furthermore, in order to attain optimal
performance for each dataset, Ciampi and his collaborators
utilized three different architectures in the first stage of their
pipeline to extract the necessary features for counting in
the second stage. A similar situation in terms of the MAE
is observed in [52], where the reported approach slightly
outperforms our framework on the ADI dataset (10.6 vs. 11.1)
and also produces inferior results on VGG (2.2 vs. 1.9) and
MBM (6.0 vs. 4.0) datasets. These experimental results bear
out the superiority of our method.

TABLE IV
COMPARING WITH POPULAR OBJECT DETECTION ALGORITHMS ON

STANDARD CELL COUNTING DATASETS

Further comparing with the state-of-the-art algorithms [49],
[50], [51] in crowd counting, our method consistently performs
better. This may be attributed to the fact that the techniques
tailored to handle the complexity of crowd scenes can be
excessively intricate and redundant for cell counting.

C. Comparison With the Object Detection Algorithms

We also compare the proposed dual-network framework
with popular object detection algorithms. The ground truths
for training the detectors were produced based on the dot
annotations to ensure identical cell count. In the comparison
experiments, the number of training images is set the same
for all the methods. As summarized in Table IV, our method
surpasses the detection systems by a large margin in terms
of MAE on all three datasets. Different object detection algo-
rithms are suitable for a particular type of microscopic image.
RetinaNet achieves higher counting accuracy on VGG and

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on October 22,2024 at 03:27:05 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: INTERACTIVE DUAL NETWORK WITH ADAPTIVE DENSITY MAP FOR AUTOMATIC CELL COUNTING 6739

Fig. 5. The change of MAE with the volume of the training set.

ADI datasets, while PP-YOLOE-SOD has better performance
on MBM images. Interestingly, the tiny version of YOLOv4
obtains lower errors than its original counterpart, implying
that the larger model might be redundant in cell counting
applications. These larger models are typically hungry for data
and may not be a suitable choice for processing a limited
number of microscopic images.

D. Analysis of the Size of the Training Set

We conducted extended experiments to investigate the influ-
ence of the training set’s volume on the performance of the
proposed framework. The experimental results are displayed in
Fig. 5. It can be seen that the MAE decreases significantly as
the number of training samples increases, implying that the
proposed method is likely to produce satisfactory counting
accuracy as long as there are enough samples. Surprisingly,
the presented pipeline can still yield state-of-the-art results
on the VGG dataset with an MAE of 2.1 when trained with
fewer images than its competitors (32 vs. 50). Similarly, good
performance with an MAE of 4.8 is also achieved on the MBM
dataset with only ten training samples. These results reveal that
our method is compelling in representation learning and has
the potential to be a reliable choice for small-sample scenarios.

E. Ablation Analysis

The ablation study is presented here to examine the ratio-
nality of our proposed approach. In the ablation experiments,
all other settings are the same except for the configuration of
the framework. The experimental results are summarized in
Table V.

We compare the MAE with different configurations over
the three datasets to justify the design choice of the proposed
counter. In the first trial, we evaluated three different network
architectures as cell counters trained without adaptive ground
truth density maps: a bare encoder-decoder, an encoder-
decoder with an attention block, and a multi-scale hierarchical
attention-based counter. It can be seen from Table V that
the naive encoder-decoder performs extremely poorly, for
example, MAE of 23.1 on the ADI dataset. With the attention
block, this count error is reduced to 19.0. The most gratifying
change is brought by the multi-scale attention-based strategy,
and the MAE on the ADI dataset dropped sharply to 12.3.

Similar trends of MAE are also observed on the other two
datasets, from 18.0 to 14.3 on the MBM and from 4.9 to 2.9 on
the VGG dataset. These results confirm the effectiveness of the
proposed counting network.

We next demonstrate the benefits of the utilization of
adaptive ground truth. As shown in Table V, in the second trial,
we trained the above three different counters under the super-
vision of adaptive density maps. The counting accuracy of
all the counters is greatly improved on the three datasets. The
most significant improvement is observed on the MBM dataset
by the multi-scale attention-based counter in terms of MAE
(from 14.3 to 4.0). Notably, the simple encoder-decoder trained
with the adaptive density maps can achieve lower counting
errors than its multi-scale attention-based counterpart trained
with handcrafted ground truth on the VGG (2.6 vs. 2.9) and
MBM (11.4 vs. 14.3) datasets. The considerable advancement
in the performance of counters proves the effectiveness of the
adaptive ground truth.

It is also worth mentioning that the GT generator is not
engaged in the inference phase, which means that it does
not bring the extra computational cost to the actual counting.
What’s more, it has the potential to help lighten the counter,
for example, tailoring an appropriate GT generator to ease the
learning complexity of the counting network.

VI. DISCUSSION

The prediction results of the proposed framework and those
of the detection algorithm (YOLOv4-tiny) are visualized in
Fig. 6 to visually demonstrate the superiority of our method.
The predictive density maps estimated by the proposed dual-
network system are very close to the ground truth maps. The
fundamental reason behind this is that the GT generator can
adjust the ground truth according to the specific properties
of the input microscopic images, making it much easier for
the counter to regress accurate predictions. In contrast, the
YOLOv4-tiny tends to underestimate the number of cells
in images. It can be seen from the estimated results that
the YOLOv4-tiny is unable to recognize cell instances with-
out conspicuous texture information. Fundamentally, this is
because this deep learning-based detector is much more data-
reliable, and there are not enough cell samples to improve
the detection accuracy. The least accurate case is observed
on the ADI images, where the cells are highly morphology-
variable and cluster irregularly. Thus, it is particularly hard for
a detection-based counter to learn effective feature representa-
tions for the subcutaneous adipose cells with a small number
of samples.

The correlation plots are also employed to measure the
disparity between the proposed method and a perfect counter.
We quantify the effectiveness of the counter with the coeffi-
cient of determination (R2), which is expressed as:

R2
= 1−

N ′∑
i=1

(ĉi
′
− c′i )

2

N ′∑
i=1

(c′i − c′)2

, (12)

where c′ is the mean of the real cell count.
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TABLE V
THE EXPERIMENTAL RESULTS OF ABLATION STUDY

Fig. 6. Comparing the prediction results of our method with those of the detection algorithm. EST and GT refer to the estimated number of cells and the
real count, respectively. The second column shows the ground truth density maps, followed by the corresponding estimated density maps regressed by the
proposed counter. The ground truths and predictions of the YOLOv4-tiny [54] are in the fourth and fifth columns, respectively.

Fig. 7. The R2-plots of the proposed framework on the test images of the three datasets. Each circle denotes the number of cells in one microscope image,
with the x-value being the real count and the y-value being the count estimated by our method. The dotted line depicts the perfect counter, while the proposed
counter is represented by the solid line.

Fig. 7 displays the R2-plots computed using the test images
from each dataset in one experiment. The dashed line (R2=1)
represents an ideal counter, which is a diagonal line with
a slope of one, indicating that the estimates are perfectly

accurate and equal to the real count. The presented approach
achieves an R2 larger than 0.82 on all the three datasets,
demonstrating its practicability and robustness. Explicitly, our
framework is nearly foolproof for the VGG images with an
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Fig. 8. Visualization of the predicted density maps at Epoch1, Epoch10, Epoch100, and Epoch1000 of the training process. The brightness simply
represents the relative value of the pixel in individual feature maps for clear visualization.

Fig. 9. Application of the proposed method in the quantification of cell
growth.

R2 of 0.998 and also an excellent counter for the MBM data
(R2
= 0.977).

We next investigate the reasons for the struggling perfor-
mance of the algorithm on the ADI dataset. Intuitively, the
adipose cells exhibit greater variation in size and shape com-
pared to the synthetic bacteria and bone marrow cells, making
it more challenging for the networks to learn the representative
features of the samples, as shown in Table II. Moreover, the
tight packing of cell instances in adipose tissue and the lack
of clear boundaries between individual cells pose additional
challenges for the recognition and regression. To gain insights
into the underlying mechanism, we visualize the estimated heat
maps at different epochs during the training process.

As shown in Fig. 8, at the beginning (Epoch1), the counter
just stochastically copies the low-level textures related to the
input, which have nothing to do with counting. However,
at Epoch10, different phenomena are observed on different
datasets. For the adipose tissue, the algorithm only learns
edge and distractors information, which might even have
a negative impact on the final estimation. In contrast, the
system captures the features of bacteria and bone marrow
cell instances. With further training, the estimator has learned
the semantic information of samples from both the VGG and
MBM datasets at Epoch100 and regressed the preliminary

density maps. At this stage, the network has just got a rough
picture of the spatial distribution of cells in the ADI image,
which is still far from the desired instance-level heat map.

Subsequently, at Epoch1000 epoch, the proposed learning
system can output a fairly accurate density map when inputting
a VGG or MBM image. The high-level semantic features
of adipose tissue are captured by the system at this stage.
The training process also verifies that the proposed frame-
work can effectively extract the semantic information of the
various cells, which is central to regressing an instance-level
density map for counting. Therefore, our method is optimal
for zenithal isotropic cell counting under microscopy and also
a decent alternative for polymorphic scenarios.

Cell count is an indicator for the assessment of cell growth.
We also evaluate the effectiveness of our method in this practi-
cal application by automating the cell counting process based
on our previous study [58]. In the experiments, we collected
60 images of cells cultured on Petri dishes with a size of 384 ×
384 pixels, as shown in Fig. 9. After training the proposed
network with 30 samples, we tested the trained counter with
the remaining images and output the cell counts. Our method
achieves an MAE of 1.8 on the test set, further demonstrating
its generalizability.

The computational efficiency of a deep learning model is
an essential consideration in practical applications. Therefore,
we measure the average inference time of our method on
the test set to evaluate its real-time performance. Specifically,
inference times for ADI and VGG datasets are 10.5 ms per
image and 11.3 ms per image, respectively. In contrast, the
processing time significantly increases to 52.6 ms for each
MBM sample due to the increased image size. In summary,
our approach demonstrates the capability to perform real-time
processing on images of common resolutions, such as ADI
and VGG datasets.
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VII. CONCLUSION

In this paper, we propose an interactive dual-network frame-
work for automatic cell counting in microscopic analysis. The
GT generator in our framework is able to dynamically adapt
the intermediate ground truth to match the properties of the
cell samples through joint training with the counter. Thus,
the counting network can regress high-qualify density maps
under the supervision of the optimized ground truth maps.
In addition, a multi-scale attention-based network is developed
to act as the counter. By leveraging the attention block and
the hierarchical multi-scale encoder-decoder architecture, the
counter can effectively and efficiently extract and incorporate
multi-level features to further improve the accuracy of the
predicted density maps. The presented framework is evalu-
ated on three public cell counting datasets. The new method
achieves the best performance on two benchmark datasets
(i.e., VGG and MBM) and performs competitively with the
state-of-the-art on ADI dataset, demonstrating its effectiveness,
universality, and practicability.

Compared to the 2D scenario, 3D cell counting techniques
remain largely underexplored. In the future, the proposed
framework has the potential to be extended to operate in 3D
space and handle the challenges associated with volumetric
data. In addition, our work provides inspiration for ground
truth refinement in other microscopic analysis tasks such as
cell detection.
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