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Abstract—Microscopic cell detection is a challenging
task due to significant inter-cell occlusions in dense clus-
ters and diverse cell morphologies. This paper introduces
a novel framework designed to enhance automated cell de-
tection. The proposed approach integrates a deep learning
model that produces an inverse distance transform-based
detection map from the given image, accompanied by a
secondary network designed to regress a cell density map
from the same input. The inverse distance transform-based
map effectively highlights each cell instance in the densely
populated areas, while the density map accurately esti-
mates the total cell count in the image. Then, a custom
counting-aided cell center extraction strategy leverages the
cell count obtained by integrating over the density map to
refine the detection process, significantly reducing false
responses and thereby boosting overall accuracy. The pro-
posed framework demonstrated superior performance with
F-scores of 96.93%, 91.21%, and 92.00% on the VGG, MBM,
and ADI datasets, respectively, surpassing existing state-
of-the-art methods. It also achieved the lowest distance
error, further validating the effectiveness of the proposed
approach. These results demonstrate significant potential
for automated cell analysis in biomedical applications.

Index Terms—Cell detection, healthcare automation,
deep learning, inverse distance transform, cell counting.

I. INTRODUCTION

C ELL detection, which involves identifying the positions
of individual cells, is a common yet challenging task

Received 24 January 2024; revised 15 May 2024; accepted 14
June 2024. Date of publication 20 June 2024; date of current version
4 October 2024. This work was supported in part by the Research
Grant Council (RGC) of Hong Kong under Grant 11212321, Grant
11217922, and Grant ECS-21212720 and in part by the Science and
Technology Innovation Committee of Shenzhen under Grant Type-C
SGDX20210823104001011. (Corresponding author: Jun Liu.)

Rui Liu, Wei Dai, Tianyi Wu, Min Wang, Junxian Zhou, Xiaozhen
Zhang, and Jun Liu are with the Department of Mechanical Engi-
neering, City University of Hong Kong, Hong Kong, SAR, China, and
also with the Centre for Robotics and Automation, City University of
Hong Kong, Hong Kong, SAR, China (e-mail: rui.liu@my.cityu.edu.hk;
jun.liu@cityu.edu.hk).

Cong Wu and Wen Jung Li are with the Hong Kong Centre for
Cerebro-cardiovascular Health Engineering (COCHE), Hong Kong,
SAR, China, and also with the Department of Mechanical Engineering,
City University of Hong Kong, Hong Kong, SAR, China.

Digital Object Identifier 10.1109/JBHI.2024.3417229

in biology and medicine. Manual detection under microscopy
is labor-intensive and prone to subjective errors, especially in
densely populated regions where cells are closely clustered.
Therefore, there is a strong demand to automate the cell detection
procedure with higher accuracy and enhanced objectivity.

Traditionally, automated cell detection strategies are carefully
tailored based on the given microscopic images [1], [2], [3].
The approach for one particular scenario may vary significantly
from another, contingent upon factors such as cellular charac-
teristics, image acquisition techniques, and background texture.
Moreover, the detection accuracy is usually hindered by inherent
defects present in the images and the limitations associated with
handcrafted features. These challenges have spurred researchers
to develop more robust, universally applicable methods for fully
automatic cell detection.

Deep learning has recently achieved unprecedented success
across diverse domains [4], [5], [6], [7], [8]. In biomedicine,
this revolutionary technology has also demonstrated its pow-
erful capabilities in various applications [9], [10], [11], [12],
[13]. Consequently, a bunch of systems based on deep learning
have been developed, aiming to enhance the intelligence and
generalizability of the cell detection process [14], [15], [16].

One widely employed approach for cell detection involves
predicting individual bounding boxes for each cell instance.
However, this strategy often struggles in scenarios where cells
are densely clustered or exhibit considerable variation in mor-
phology. Additionally, the process of annotating objects with
bounding boxes is time-consuming and expensive [17], [18].
In this annotation paradigm, annotators need to meticulously
focus on the contours of objects of various sizes and carefully
draw bounding boxes, which is labor-intensive. An alternate
approach for automatic cell detection is based on map regression,
which can effectively alleviate the aforementioned issue. This
strategy involves regressing a spatial representation map for a
given microscopic image, where the value of each pixel indicates
the likelihood of cell presence. The problem is subsequently
reformulated as the task of identifying a local maximum for each
cell, as the center of the cell is expected to generate a more potent
response compared to the surrounding background. The map
regression pipeline only requires weak annotations, typically in
the form of a dot near the center of each object. Compared to
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Fig. 1. The differences between the density map and the IED map.
(a) The input image. (b) The cell instances become indistinguishable
in occlusion regions in the density map. (c) The IED map accurately
pinpoints cell locations, even in highly dense areas.

drawing a polygon tightly enclosing an object, clicking on the
center of that object is much simpler and less time-consuming.

The spatial representation map, functioning as the supervisory
signal for training the detector, is an intermediate representation
created from the dot map. One common way to obtain the ground
truth spatial representation map is by applying a Gaussian kernel
to each dot, resulting in a blurred representation, also referred
to as the density map. The density map is effective in accurately
determining the number of objects by integrating over the entire
map. However, it is difficult for Gaussian blobs to provide
individual cell locations in highly dense regions with substantial
cell occlusions. In such regions, as shown in Fig. 1(b), the
overlapping of blobs can lead to a false detection where the
local maxima may not converge to the cell centers. To address
this issue, the inverse Euclidean distance-based (IED) map is
employ to act as the intermediate ground truth. As shown in
Fig. 1(c), the individual cell centers are highlighted in the IED
map, making it work effectively even in highly dense areas.
While this method successfully localizes individual instances,
it performs poorly in acquiring the number of cells, potentially
leading to numerous false responses.

In previous studies [15], [32], density maps were used as the
intermediate representation for supervised training of detection
networks. However, this approach resulted in suboptimal perfor-
mance in the dense regions. To address this, the IED map is im-
proved to serve as the intermediate representation. The proposed
pipeline begins with the microscopic image fed into the detection
network (detector) to generate the corresponding IED map. This
map facilitates the detection of cell centers by identifying local
maxima. Despite this improvement, another challenge emerges
due to the unknown number of cells, which can cause the vanilla
local maxima determination approach to yield numerous false
responses. To address this issue, a counting-aided strategy is
introduced for cell center extraction. In this strategy, another
network functions as a counter to estimate a density map by
fusing the IED map and the input image. The cell count, obtained
by integrating the predicted density map, aids the determination
of the cell center by eliminating false detections.

The new method involves a synergistic interaction between
the localization and counting components. The detector boosts
the accuracy of the density map regression through feature
fusion, and conversely, the counter improves the precision of
the local maximum extraction algorithm for determining cell

TABLE I
AN OVERVIEW OF THE RELATED WORK

centers. Moreover, the structural information within the IED
map is crucial for accurate cell localization. Consequently, a
component has been incorporated into the proposed pipeline
specifically to refine the texture pattern of the IED map during
training.

In summary, this study makes the following primary
contributions:

� A novel framework that utilizes the localization capabil-
ities of the IED map along with the counting proficiency
provided by the density map is introduced to enhance the
effectiveness of deep learning-based cell detection.

� Development of a U-shaped network with embedded
residual blocks specifically targets the regression of high-
quality IED maps, ensuring robust feature extraction and
processing.

� A counting-aided strategy for cell center extraction is
implemented, which significantly improves accuracy in
locating individual cell instances.

� A specialized module is designed to refine the IED map,
thereby boosting the overall performance of the detection
framework.

� The effectiveness of the proposed framework is eval-
uated across three public databases. The experimental
results demonstrate that the proposed method outper-
forms existing state-of-the-art approaches, highlighting its
superiority.

The remainder of the article is organized as follows. Section II
reviews the recent advancements in cell detection approaches.
Section III then introduces the proposed cell detection frame-
work. The experimental setup, including datasets and imple-
mentation details, is described in Section IV. Section V reports
the experimental results, followed by a discussion in VI. Finally,
Section VII concludes this work.

II. RELATED WORK

This section reviews recent advances in automatic cell detec-
tion, discussing a variety of techniques and methodologies that
have been presented in the literature to tackle the challenges
associated with cell detection. The related work is summarized
in Table I.

A. Traditional Methods

Traditional image processing techniques have been founda-
tional in the development of cell detection systems. For instance,
Mualla et al. [1] and Lu et al. [2] applied techniques such as
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scale-invariant feature transform (SIFT) key points extraction
and Bayesian modeling, respectively, to enhance cell detection
for specific applications. Similarly, Xing et al. [19] recognized
seeds with hierarchical voting-based detection to provide priori
information for Ki-67 scoring. However, the effectiveness of
these methods in scenarios involving significant cell overlap
remains to be validated. To tackle this challenge, Arteta et al. [20]
introduced a tree-structured graphical model for detecting over-
lapping objects. Additionally, Ge et al. [3] employed distance
transform and spectral clustering to differentiate objects within
overlapping regions to develop a system for counting blood cells.
Aiming to improve both accuracy and efficiency in cell detection,
Kainz et al. [21] proposed a simple system that predicted a score
map for a given image using Random Forests [22] and then
found the local maximums as the cell centers. Although tradi-
tional methods have demonstrated decent performance in certain
situations, their robustness and generalizability are constrained
by the need to adjust algorithms manually depending on image
texture features.

B. Deep Learning-Based Methods

The emergence of deep learning has transformed the field
of cell detection, enabling end-to-end learning directly from
raw imaging data. This advancement significantly surpasses the
constraints of traditional image processing methods, provid-
ing more robust and versatile solutions for cell identification
challenges.

1) Bounding Box-Based Approaches: Deep learning-based
object detection algorithms typically utilize bounding-box
annotations to provide information for supervised training.
Techniques like YOLO [24] and the advanced version [28] were
modified by Aham and Islam [23], and Shakarami et al. [27],
respectively, to enhance the accuracy of cell identification.
Similarly, Faster R-CNN [25] has been re-implemented by
Hung et al. [26] to develop an easy-to-use tool that facilitates
cell detection in both brightfield and fluorescence images. To
address the issue of low recognition rates caused by dense cell
distributions, Gu and Sun [29] enhanced the feature processing
capability of the network in high-density feature areas by
integrating an attention module into YOLOv5 [30]. These deep
learning-based detectors can be trained to recognize various cells
without meticulous customization specific to particular image
texture features, thus improving generalizability. However, these
methods typically rely on the prediction of bounding boxes for
individual cells, which can be computationally intensive and
particularly challenging when cells are tightly clustered.

2) Spatial Representation Map-Based Approaches: To ad-
dress the limitations associated with bounding box predictions
and streamline the annotation process, research efforts have
shifted towards developing deep learning networks to produce
spatial representation maps for cell detection. Xie et al. [15]
constructed fully convolutional models to regress Gaussian-
based density maps from the microscopic images to enhance
cell detection and counting. Similarly, Lu et al. [31] employed
the density map as an intermediate representation for object

identification in their class-agnostic counting system. Subse-
quently, Guo et al. [32] extended this paradigm to 3D cell recog-
nition by modifying the infant U-Net [33] with 3D operations.
While these methods effectively circumvent the drawbacks of
bounding boxes by using Gaussian transform maps, challenges
still remain in densely populated cell areas where Gaussian
peaks may become indistinguishable due to occlusion, thereby
diminishing detection accuracy.

Fortunately, the introduction of inverse distance maps, where
pixel intensity is inversely proportional to the Euclidean distance
from the nearest cell center, offers a potential solution to this
issue by distinctly highlighting each cell center. Xie et al. [34]
employed a custom convolutional neural network to produce
spatial proximity patches, which were then fused to yield the
final prediction map for the cell image. Building on this foun-
dation, the same team [35] improved this method by using a
well-designed hierarchical encoder-decoder network to directly
regress a proximity map that matches the size of the input.
Furthermore, the effectiveness of the inverse distance kernel for
cell localization was also validated by Guo et al. [36].

Other efforts to tackle the challenges in cell identification
have also been made. For instance, to address the challenges of
localizing cells in densely overlapping and low-contrast scenes,
Chen et al. [37] introduced an innovative concept of the direction
field map. In this map, each foreground pixel is represented as
a vector pointing towards the center of the nearest object, while
background pixels are set to zero. This novel representation has
demonstrated significant potential in enhancing cell localization
accuracy across various complex scenarios.

III. METHODOLOGY

This section introduces to the overall structure of the proposed
pipeline, followed by a detailed description of each component
within the framework.

A. Framework Overview

The basic process of spatial representation map-based cell
detection can be described formally as follows. Given a micro-
scopic image X ∈ RH×W×C , the function Fd(·) will estimate
a spatial representation map Ŷ ∈ RH×W×1 corresponding to it.
Then the local maxima in Ŷ can be found as the cell centroids.
The map serves as an intermediate representation in this process
because directly mapping the cells to sparse dots is challenging.
To derive the locations of each cell, the proposed framework is
built with three components, including ground truth generation,
basic detection, and auxiliary counting, as shown in Fig. 2.

In the basic detection part, a customized network (detector)
acts as the mapping function Fd(·). The deep learning-based
detector can be trained to generate IED maps for the cell images
by leveraging its superior nonlinear representation ability. The
resulting maps are then processed by a local maximum iden-
tification algorithm for the final outputs. However, due to the
lack of knowledge about the number of cells in the input image,
local maximum identification process may generate a significant
number of false responses, resulting in a decrease in detection
accuracy. To address this issue, an auxiliary counting module is
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Fig. 2. The proposed framework for cell detection in microscopic image analysis. During the training stage, the cell sample is input into the
detection network to regress the IED map, and the auxiliary counter estimates the density map based on the concatenation of the input image and
the obtained IED map. The ground truth generation branch generate the ground truths for training the detector and counter. During the testing phase,
the trained detector and counter regress an IED map and a density map for the unseen image, respectively. Finally, the cell extraction algorithm
extracts cell instances from the predicted IED map with the assistance of the estimated cell count. In the detection result, pseudo bounding boxes
are generated from the predicted map for better visualization.

employed to assist the detection module in accurately identifying
the cell centroids in a given image by providing the count of
objects presented in that image. In the auxiliary counting branch,
a deep learning model (counter) is trained to regress a density
map based on the input image and its corresponding IED map.
The cell counting is obtained by summing up the density map.
These two components are complementary to each other.

The ground truth generation component is responsible for
providing supervisory information for the training of the detector
and counter. In addition, a network (refiner) is utilized to polish
the pattern of the IED map. The refiner dynamically adjusts the
ground truth during the training process. It is worth noting that
during the testing phase, the ground truth generation part is not
involved.

B. Ground Truth Generation

Inspired by [38] and [39], a modified inverse distance trans-
form is proposed to produce ground truth IED maps for training
the detector. Given a human-annotated dot map A ∈ RH×W×1

with a set of cell centers C, the corresponding IED map Y ∈
RH×W×1 can be expressed as:

Y (h,w) =
1

D(h,w)(λB1×D(h,w)+B2) + α
(1)

where D(h,w) is the distance between the position (h,w) and
its nearest cell center (ch, cw), α is set to 1, B1 and B2 are
modulated by the refiner to dynamically adjust the ground truth
features during training. To avoid potential arithmetic overflow

TABLE II
THE ARCHITECTURE DETAILS OF THE REFINER

caused by the exponential operation, B1 is scaled by a small
factor λ, which is set to 0.01. D(h,w) can be computed as:

D(h,w) =
√
(h− ch)2 + (w − cw)2, (ch, cw) ∈ C (2)

The refining network consists of three convolutional layers
and two fully connected layers. During the training process,
the refiner is optimized along with the detector through back
propagation. To reduce the computational burden, one single
cell instance is cropped from each training image to serve as the
representative input for the refining network. B1 and B2 are the
first and second elements in the output of the refiner, respectively.
Explicitly, the structure details of the refiner are summarized in
Table II. The Conv-ReLU-MaxPool denotes a 2D convolution
operation followed by ReLU activation and max pooling with
stride of 2. The kernel size and stride of the convolution operation
are configured as 3× 3 and 1, respectively. FC represents a fully
connected layer.
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Fig. 3. The architecture of the detector. [Conv(-BN-ReLU), S, k × k, N ] represents a 2D convolution operation with the stride of S, the output
channel number of N and the kernel size of k × k, followed by batch normalization (if applicable) and ReLU activation (if applicable). The transposed
convolution operation also has a similar description. The [Encoder M ] or [Decoder M ] indicates that the number of output channels in this block is
M . The padding operation is used to adjust the feature maps to the desired size in each layer.

The Gaussian transform map is adopted to supervise the
learning of the counter. The ground truth density map is obtained
by convolving the expert-annotated dot map A with a Gaussian
kernel. In the experiments, the standard deviation and size of
the bivariate Gaussian kernel are set to (2,2) and 17× 17,
respectively.

C. The IED Map Regression

A hierarchically concatenated network, based on modifica-
tions to the U-Net architecture [33], is designed to produce IED
map, as illustrated in Fig. 3. The input layer has three channels,
corresponding to the number of channels of the cell image.
Compared to the original U-Net, the detector increases the
depth of the network by integrating two residual encoders into
each stage of the encoding process, thereby enhancing feature
extraction capability. In each encoder, a residual connection [40]
is employed to improve training stability. Instead of utilizing
max pooling, the first residual encoder in each stage performs
downsampling through a convolutional operation with a stride of
2. This alternative not only better preserves spatial information
but also enhances the learning capacity of the network. To reduce
the complexity of the architecture, the number of channels of
feature maps is halved compared to the original. Additionally,
appropriate padding is applied to each layer to make the output
size equal to the input size, thus ensuring accurate localization
of cell instances.

To supervise the training of the detector, a combination
of mean squared error (MSE) and structural similarity index
(SSIM) [41] is employed. This combination has been demon-
strated to be effective in obtaining high-quality regression maps
in previous studies [39], [42]. The MSE lossLmse

d and the SSIM
loss Lssim

d for training the detector can be calculated as follows:

Lmse
d =

∥∥∥Ŷ − Y
∥∥∥
2

(3)

Lssim
d = 1− (2μŶ μY + C1)(2σŶ Y + C2)

(μ2
Ŷ
+ μ2

Y + C1)(σ2
Ŷ
+ σ2

Y + C2)
(4)

where Y and Ŷ are the ground truth IED map and its corre-
sponding prediction, respectively. The μ and σ are the mean and
variance. Following [41], the C1 and C2 are set to 0.0001l2 and
0.0009l2 to avoid unstable results. The l is the range of the value
in the estimated image. Finally, the objective of the joint training
of the detector and the refiner is obtained by adding the MSE
and SSIM losses:

Ld = Lmse
d + Lssim

d (5)

D. Auxiliary Counting

The auxiliary counting module aims to estimate the number
of cells in the input image. Previous research has demonstrated
the effectiveness of density maps in cell counting [32], [52].
In the proposed system, the counter is created by modifying
the detector. Since the input of the counter is the channel-wise
concatenation of cell images and the obtained IED map, the
number of channels in the input layer of the counter has been
adjusted to four.

The training process of the counter is similar to that of the
detector, with the main difference being the supervisory infor-
mation. To reduce the computational complexity of the training
process, the counter is trained using the MSE loss, which is
calculated as follows:

Lc =
∥∥∥Ẑ − Z

∥∥∥
2

(6)

where Z ∈ RH×W×1 and Ẑ ∈ RH×W×1 are the ground truth
density map and its corresponding prediction, respectively.

E. Cell Extraction

The cell centers can be obtained by identifying the local
maxima in the inferred IED map. Following the strategy in [39],
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Algorithm 1: The Cell Center Extraction Process.

Input: The predicted IED map Ŷ (h,w) and the
corresponding estimated number of cells ĉ.

Output: The predicted cell centers {pi}ĉ1.
# Obtain the candidates

1: Ỹ (h,w) = MaxPool(Ŷ (h,w), size = (3, 3), stride =
1)

2: if Ỹ (h,w) == Ŷ (h,w) then
3: Ỹ (h,w) = 1
4: else
5: Ỹ (h,w) = 0
6: end if
7: P (h,w) = Ỹ (h,w)× Ŷ (h,w)

# Get the top ĉ values in P (h,w)
8: Preshape = P (h,w).clone.view(−1)
9: Vtop_ĉ, indices = get_topk(Preshape, ĉ)

# Obtain the predicted cell centers
10: Vthreshold = min{Vtop_ĉ}
11: if P (h,w) ≥ Vthreshold then
12: P (h,w) = 1
13: else
14: P (h,w) = 0
15: end if
16: {pi}ĉ1 = nonzero(P (h,w))
17: return {pi}ĉ1.

the map is first filtered using a 3× 3 max pooling operation, and
then locations where the values remain unchanged are retained
as candidate cell centers. Unsurprisingly, there are many false
responses contained in these candidates. In previous research,
the local maxima were recognized in individual sliding window
patch under the guidance of the corresponding region count [43].
However, this strategy yielded suboptimal results for cell detec-
tion, as the number of objects in the microscopy field of view is
typically much lower compared to dense crowd scenarios. The
intuitive reason behind this observation is that the kernel of a
certain cell instance can be split into different regions, resulting
in significant region-counting errors for counting a small number
of objects.

To obtain a high accuracy for cell extraction, a different
approach is adopted by extracting the cell centers from the
entire predicted IED map at once, constrained by the estimated
number of cells in the image. This allows for consideration of
the global context and mitigates the errors caused by region
counting limitations. Specifically, the process begins with the
summation of the corresponding density map of the predicted
IED map to obtain the estimated cell count, denoted as ĉ. The
top-ĉ candidates, based on their probabilities, are then retrieved
to serve as the inferred cell centers. This selection strategy pri-
marily focuses on identifying and pinpointing the most probable
locations of cells in the image, thereby enhancing the accuracy
of cell detection.

The cell instance extraction process is described in
Algorithm 1.

Fig. 4. Example images of the three datasets. From left to right: VGG,
MBM, ADI.

IV. EXPERIMENTAL SETUP

This section describes the dataset and implementation details
in the experiments.

A. Dataset Description

In this study, three public datasets are employed to evaluate
the proposed method, as shown in Fig. 4. One dataset consists
of synthetically generated suspension cells, while the other two
originate from biological tissues. In one of the tissue image
sets, cells are sparsely distributed, while the other dataset fea-
tures densely packed cells. These three datasets represent three
distinct scenarios, enabling an evaluation of the algorithm’s
performance across diverse situations.

1) VGG Dataset: The VGG dataset, introduced by Lem-
pitsky et al. [45] from the Visual Geometry Group (VGG) at
the University of Oxford, comprises 200 synthetic images. The
images were generated using the system presented by Lehmus-
sola et al. [46]. Each image in this dataset has a dimension of
256× 256× 3 pixels, and the dataset contains a total of 35,192
bacterial cells. The system was trained using 100 images, with
the remaining images reserved for testing. The cell detection in
this dataset is challenging due to variations in focal distances
and occlusions among the bacteria.

2) MBM Dataset: The second dataset is the modified bone
marrow (MBM) dataset, created by Paul et al. [47]. This dataset
consists of 44 images with a dimension of 600× 600× 3 pixels
and contains 5,553 cells in total. These samples were obtained
from eight healthy subjects and stained with Hematoxylin and
Eosin. Thirty images were used to train the network and the
remaining for testing. This dataset has special challenges in cell
detection due to the inhomogeneous background texture and
variations in cell morphologies.

3) ADI Dataset: The Adipocyte (ADI) dataset was collected
from the Genotype-Tissue Expression (GTEx) project [48] by
Paul et al. [47]. This dataset consists of 200 microscopic im-
ages of human subcutaneous adipose tissue with a size of
150× 150× 3 pixels. The total number of cells in these data
is 29,684. This dataset was equally split into training and test
sets. These adipose cells vary significantly in shape and size and
are packed tightly together, making the cell detection difficult.

B. Implementation Details

The proposed method was implemented using PyTorch. Dur-
ing the training phase, the batch size was set to 16 for the VGG

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on October 05,2024 at 11:32:23 UTC from IEEE Xplore.  Restrictions apply. 



6098 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 28, NO. 10, OCTOBER 2024

and ADI datasets, and to 8 for the MBM dataset. random crop-
ping, flipping, and rotating techniques were applied to augment
the training data. The new size after cropping was obtained by
multiplying the original size by 0.875 and rounding it down to
the nearest value divisible by 16. This calculation was performed
due to the model’s architecture, which includes four cascaded
downsampling operations with a stride of 2. The cropped images
were then randomly flipped horizontally and rotated with an
angle of k × 90◦(k = 1, 2, 3, 4) before being input into the
system. At the testing stage, the sizes of the MBM and ADI
images were padded to 608× 608 and 160× 160, respectively.
This ensured that the test samples could be processed compatibly
by the framework while retaining all the cell instances. The
aforementioned operations were applied consistently to both the
images and their corresponding labels.

The proposed framework was optimized using the Adam al-
gorithm [49] with a weight decay of 0.0001 for 2000 epochs. The
initial learning rate was set to 0.0005 for both the detector and
counter components, while the refiner had an initial learning rate
of 1e-6. Inspired by [50], the learning rate was increased linearly
to the initial value during the first ten epochs and then followed
a cosine annealing schedule for the remaining iterations. The
experiments were conducted on a server equipped with four
Nvidia RTX3090 GPUs and an Intel Xeon Platinum 8375 C
CPU.

V. EXPERIMENTAL RESULTS

In this section, the evaluation metrics are presented and the
detection results of the framework are compared with state-of-
the-art methods. Additionally, ablation studies are conducted to
validate the effectiveness of the design.

A. Evaluation Protocol

The performance of detection methods is evaluated using
precision, recall, F-score, and distance error. Prior to computing
these evaluation metrics, criterion for successful detection of a
given cell instance is established. A cell is deemed successfully
detected if the detection occurs within a radius of Rd around it.
Here, the tolerance Rd is determined based on the average cell
size in each dataset. A correct detection is classified as a true
positive (TP ). A detection that does not match any annotation is
considered a false positive (FP ). A false negative (FN ) refers
to a ground truth cell that has not been assigned a detection.
In the experiment, the Hungarian algorithm was employed to
match the annotated dots with the predicted points to achieve
maximum bipartite matching.

The precision (P ) and recall (R) can be calculated by
TP/(TP + FP ) and TP/(TP + FN), respectively. The F-
score is the harmonic mean of the recall and precision, given
by 2× P ×R/(P +R). The distance error is quantified by
computing the normalized mean (μd) of the Euclidean distance
(d̂) between each ground truth location and its correctly matched
detection. For a test image set containing a total of T cell

TABLE III
COMPARATIVE RESULTS FOR CELL DETECTION IN VGG DATASET

instances, the μd can be calculated as follows:

μd =

∑T
i=1d̂

T ·Rd
(7)

B. Comparison With the State-of-The-Art Methods

In this part, a comparative analysis between the proposed
method and the state-of-the-art cell detection techniques is con-
ducted. Additionally, the evaluation is extended to encompass
advanced cell counting algorithms such as Interact Dual Net-
work (IDN) [51] and C-FCRN-Aux [52], which can be used for
cell detection with post-processing techniques.

1) VGG Dataset: Following [37], the radius of the ground
truth region was set to 4 for the highly realistic synthetic bacterial
cells in the VGG dataset. The experiment results are summa-
rized in Table III. It is noteworthy that for the re-implemented
methods, the hyperparameters were fine-tuned to achieve their
optimal performance. All methods except IDN achieved high de-
tection accuracy with an F-score exceeding 80%. The proposed
approach surpassed state-of-the-art methods in terms of F-score,
a comprehensive metric measuring the detection capability of
an algorithm. Thanks to the IED map and the tailored counting-
aided cell center extraction strategy, the new method achieved
an optimal balance between precision and recall. Specifically,
this system attained the highest recall rate while also delivering
competitive performance in terms of precision.

The location capabilities of individual approaches are further
revealed in the distance error. As depicted in Fig. 5, the proposed
method achieves a marginally lower distance error compared to
its competitors.

2) MBM Dataset: In accordance with [35] and [37], a dis-
tance threshold of 16 pixels was set between the actual cell
center and its correctly matched detection for the bone marrow
samples. The results of the experiments conducted on the MBM
database are reported in Table IV. The hyperparameters for the
re-implemented methods were fine-tuned in order to attain their
optimal performance. The proposed method achieved the highest
precision and F-score on this dataset. The GeoNet [44] and
structured regression model [35] obtained relatively high recall
rate. However, they perform poorly in precision. In contrast, the
proposed framework yielded highly competitive results across
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Fig. 5. The distance errors of the proposed method on the three
datasets: VGG, MBM, ADI.

TABLE IV
COMPARATIVE RESULTS FOR CELL DETECTION IN MBM DATASET

TABLE V
COMPARATIVE RESULTS FOR CELL DETECTION IN ADI DATASET

all evaluation metrics, thanks to the counting-aided cell center
extraction strategy.

Regarding the localization performance observed in the bone
marrow images (Fig. 5), all of these methods demonstrated
distance errors significantly smaller than the radius of the ground
truth region. This can be attributed to the inherent distinctiveness
of cell features within the bone marrow sample, as shown in
Fig. 4. Consequently, the networks trained with ground truth
maps emphasizing distinct features near the object centroids
could effectively capture individual cell instances. Additionally,
the proposed method exhibited the lowest average distance error,
further validating its robustness and superiority.

3) ADI Dataset: The radius of the ground truth region for the
human subcutaneous adipose tissue sample was set to 12 pixels,
based on the size of the cell. The experimental results are pre-
sented in Table V. Hyperparameter fine-tuning was conducted
for the re-implemented methods, aiming to attain their best

TABLE VI
COMPARISON OF CELL COUNTING RESULTS

performance. The proposed method surpassed its competitors
in terms of F-score and precision on this dataset. Due to the high
sensitivity of the IED map in localization and the counting-aided
cell extraction strategy, this approach neatly trade off precision
and recall. In contrast, the SAU-Net [32] and C-FCRN-Aux [52]
achieved high recall rates but performed poorly in terms of
precision.

The cells in the human subcutaneous adipose tissue lack
distinctive features, posing a challenge for detectors to accu-
rately capture individual objects, as indicated in Fig. 4. As a
result, all methods demonstrated relatively poor performance
on this dataset in terms of distance error, as observed in Fig. 5.
However, primarily owing to the inverse distance transform
map that prominently highlighted the center of each cell, the
proposed framework and the FIDT approach achieved slightly
lower distance errors compared to other competitors.

C. Counting Performance

The proposed framework is also compared with other ap-
proaches in terms of counting performance. The mean absolute
error (MAE) is utilized as a metric to quantify the counting
performance. The MAE is defined as the average absolute dif-
ference between the estimated cell number and the real count,
and it can be expressed as:

MAE =
1

N

N∑

i=1

|ĉi − ci| (8)

where N refers to the number of test images. ĉi and ci represent
the estimated cell count and real cell count of the i-th sample,
respectively.

As shown in Table VI, the proposed method achieved the
lowest and second-lowest counting errors on the ADI and MBM
datasets, respectively, and its performance on the VGG dataset
was also above average. Therefore, compared to other competi-
tors, the proposed framework demonstrates a very competitive
counting capability. Interestingly, some methods exhibit con-
tradictory behavior between cell counting and cell detection.
For example, IDN performed poorly in detection but achieved
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TABLE VII
THE EXPERIMENT RESULTS OF THE FRAMEWORKS WITH DIFFERENT DESIGNS ON THE VGG DATASET

impressive results in cell counting. This is because the post-
processing techniques employed for cell counting pipeline are
completely different from those used in cell detection. Cell
counting treats the microscopic image as a whole, whereas
detection requires focusing on each individual cell instance.

D. Ablation Analysis

Ablation studies were conducted to justify the rationality of
the proposed approach.

1) Analysis of the Framework Design: The proposed frame-
work was investigated with varying configurations on the VGG
dataset. In the first trial, the detector was trained using the density
map, and then extracted the cell centers from the predicted map
based on the empirical threshold. The experimental results are
summarized in Table VII. With this configuration, the system can
still yield acceptable results, validating the effectiveness of the
detecting network. The counting-aided cell extraction strategy
was then implemented to retrieve cells from the density-based
predicted map. This new trial achieved a certain improvement
in terms of F-score. Specifically, the first configuration had a
slightly higher precision, while the second one performed better
in terms of recall rate.

In the third and fourth experiments, the detector was trained
under the supervision of the vanilla IED map without refinement.
As illustrated in Table VII, the F-scores attained by both the
threshold-based and counting-aided configurations surpassed
those of their respective counterparts trained with the density
map. This underscores the efficacy of the inverse distance kernel
in cell detection.

In the subsequent trial, the detector was trained using the
refinable IED map, and the inferred map was processed by the
threshold-based local maximum determination strategy to yield
the final detections. As can be seen from Table VII, the F-score
increases significantly compared to the previous designs. The
final experiment was the proposed design, where the detector
was trained under the supervision of the refinable IED map, and
cell instances were extracted using the counting-aided strategy.
The proposed method achieved the highest F-score and recall
compared to its counterparts, while performing competitively in
terms of precision.

The prediction maps and final detection results of the second
trial and the proposed configuration are visually presented in
Fig. 6. It can be seen that in high-density regions where cells
overlap and occlude each other (as indicated within the red
ellipses), it is challenging to distinguish individual cells in

Fig. 6. Predicted results of the detector trained under the supervision
of density map and IED map, respectively. The green circles denote
the ground truth cells, while the yellow dots represent the detected
cells. The red ellipses highlight some exemplary areas where different
configurations yield varying outcomes.

the predicted density map. In contrast, the cell instances are
distinguishable in the predicted IED map.

2) Analysis of the Hyper-Parameters in IED Map Generation:
The characteristics of the IED map play a pivotal role in cell
detection. A well-designed ground truth map should be able
to clearly distinguish objects within dense regions and effec-
tively supervise the training of the detector. In the ground truth
generator of the proposed framework, the coefficients λ and α
are used to shape the fundamental attributes of the IED map.
Specifically, a higher λ value results in a more pronounced decay
of pixel values from the cell centers to the background, whereas
a lower value has the opposite effect. α is utilized to modulate
the pixel values at the cell centers. It is critical to avoid setting λ

too high, as the excessive exponential calculations could lead
to computational overflow. The experimental outcomes from
various hyper-parameter combinations on the VGG dataset are
detailed in Table VIII. In the proposed method, α and λ are set
to 1 and 0.01, respectively.

3) Analysis of the Detector: An additional ablation study
was conducted to validate the modifications applied to the
U-Net architecture in the proposed detector. As summarized in
Table IX, the proposed detector outperformed its original coun-
terpart across all indicators. This improvement can be primarily
attributed to the enhanced feature extraction capabilities of the
revised architecture. Firstly, the deepening of the network is
essential for capturing subtle variations in cell morphology and
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TABLE VIII
ABLATION STUDY OF THE HYPER-PARAMETERS IN THE IED MAP

GENERATION ON THE VGG DATASET

TABLE IX
ABLATION STUDY OF THE DETECTOR ON THE VGG DATASET

Fig. 7. The schematic diagram of block-based counting-aided cell ex-
traction strategy. In this setting, the maps are divided into 8× 8 blocks.
The count within each density map block aids the cell extraction process
in the corresponding block of the IED map. For instance, the 3rd region
in the density map provides count information for the cell extraction in
the 3rd region of the IED map.

texture, which are critical for accurate cell detection. Moreover,
the introduction of convolutional downsampling in the proposed
detector helps in preserving more spatial information than tra-
ditional max pooling, which may result in the loss of features
during the pooling process. Additionally, appropriate padding
was also incorporated into the vanilla U-Net to ensure that the
position of the cell was obtained on the full-sized image.

4) Analysis of the Counting-Aided Pattern in the Cell Extrac-
tion Strategy: The counting pattern in the counting-aided cell
extraction strategy plays a pivotal role in obtaining accurate
detection results. Intuitively, region-based counting can provide
valuable guidance, as depicted in Fig. 7. To further investigate
this, experiments were conducted using various block-based
counting-aided extraction strategies. Surprisingly, the experi-
mental results, as presented in Fig. 8, revealed an unexpected
trend that the F-score decreased as the number of blocks in-
creased. This decline in the F-score can be attributed to a
decrease in precision, while the recall rate remained relatively
consistent regardless of the number of blocks. The observation
can be explained by the fact that the Gaussian kernels near the
regional boundary are divided into different blocks, as illustrated

Fig. 8. The experimental results of cell extraction strategies based on
different fine-grained regions on the VGG dataset.

in the partial enlargement of Fig. 7. Furthermore, as the number
of blocks increases, this situation becomes more pronounced.
The division of the map into more blocks exacerbates the
aforementioned issue, resulting in a corresponding decrease in
precision and ultimately leading to a lower F-score.

VI. DISCUSSION

To further illustrate the detection capabilities of various meth-
ods, the cell detection outcomes across different datasets are
delineated in Fig. 9. As depicted in the first row, the proposed
framework exhibits superior accuracy in the VGG dataset, sig-
nificantly reducing the incidence of both false negatives and false
positives. This is particularly evident in regions with occluded
cells, as highlighted by the red ellipse, where each cell instance
is effectively identified. This is attributable to the enhanced cell
center focus provided by the IED map within the framework.
In contrast, the IDN pipeline tends to overpredict, frequently
resulting in multiple detections for single cells. This issue arises
because the IDN framework lacks a prominent focus near the
cell center in the intermediate representation map, making the
system prone to generating multiple responses.

In the second row of Fig. 9, which showcases results from the
MBM dataset, the presented method consistently outperforms
other approaches in object identification. The predicted cells are
predominantly centered within the ground truth markers, indi-
cating a smaller positional error. Other competitors, however,
frequently generate spurious detections. This is exemplified by
the IDN method’s tendency to generate multiple detections for a
same real cell, further illustrating the challenges other techniques
encounter in achieving precise localization.

The third row of Fig. 9 reveals the detection outcomes on
the ADI image. Here again, the proposed system demonstrates
superior cell detection accuracy. Notably, in cell-free areas (as
indicated by red ellipses), the reported system accurately reflects
the absence of cells, sharply contrasting with other methods
that mistakenly identify multiple cells in these regions. This
underscores the robustness and reliability of the proposed ap-
proach across different and challenging imaging conditions,
emphasizing its practical utility in diverse biological imaging
contexts.
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Fig. 9. Example cell detection results of different methods on the synthetic bacterial cell image (first row), bone marrow sample (second row), and
the human subcutaneous adipose tissue (third row). In each image, green circles indicate the ground truth cells, while yellow dots represent the
detected cells. The red ellipses highlight specific areas that demonstrate the difference in prediction results among different methods.

To further demonstrate the improvements of the proposed
method in cell detection, an additional non-parametric statistical
test was conducted. Specifically, a Wilcoxon rank-sum test was
performed to compare the proposed method with the FIDT
map, which served as the baseline. The analysis was based on
F-score values obtained from five independent trials on the VGG
dataset for each method. The results yielded a p-value of 0.008,
below the significance threshold of 0.01. The statistical analysis
indicates a significant enhancement in detecting cells, thereby
validating the effectiveness of the proposed method.

In the development of an artificial intelligence system,
time complexity is a critical consideration, especially in
practical applications where the system is required to deliver
rapid responses [53], [54], [55], [56]. Compared to machine
learning [57], [58], [59], [60] and other intelligent computing ap-
proaches [61], [62], deep learning methods [63], [64] are gener-
ally more computationally intensive. As a result, the reliance on
substantial computing resources and the resulting long inference
time are limitations of the proposed method. This is primarily
due to the fact that the system employs an additional auxiliary
counter to enhance the cell detection accuracy, which increases
the number of parameters and computational complexity.
Therefore, the design of lightweight models while maintaining
detection accuracy could be a direction for future improvements.

In practical applications, robustness against adversarial at-
tacks is a critical capability for deep learning models [65], [66].
The training of the proposed cell detector utilized a dataset free
from interference signals, leading to impressive performance
in controlled laboratory settings. However, this trained detector
may experience performance degradation in more complex real-
world scenarios, especially when confronted with sophisticated

adversarial attacks. This vulnerability is of critical concern in
intelligent medical diagnostic systems, where inaccuracies in
output could compromise the reliability of diagnostic results
and subsequent treatment decisions. Given these challenges,
a potential research focus for the future should be enhanc-
ing the robustness of the detector against various disturbed
inputs, ensuring the effectiveness and reliability in real-world
applications.

VII. CONCLUSION

This paper presents a novel framework for cell detection in
microscopic images by leveraging the refined IED map as an
intermediate representation. The IED map effectively retains
the precise location information from the original annotations
and discriminates every individual cell instance within densely
clustered areas. The framework is enhanced by a counting-aided
cell center extraction strategy to extract the individual instances
from the predicted IED map accurately. In this pipeline, an
auxiliary counting network estimates the number of cells in
the input image, which then guides the elimination of false
responses during the cell instance identification process. The
proposed framework was evaluated across three public datasets,
namely VGG, MBM, and ADI, achieving F-scores of 96.93%,
91.21%, and 92.00%, respectively. These results set new records
for state-of-the-art cell detection performance, demonstrating
the universality and efficacy of the proposed system. In sum-
mary, the foremost contribution of this research is the use of
the improved inverse distance transform as an intermediate
representation for cell detection, coupled with the development
of a bespoke deep learning-based system to implement this
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concept. The study has made significant progress in the field
of microscopic cell detection and provides a promising solution
to overcome the challenges in cell biology and histology.

In the future, efforts can be directed toward extending the pro-
posed framework to 3D cell detection scenarios. Additionally,
the training data used in this study is assumed to be without
defects. However, in real-world applications, imperfect data
are commonly encountered. Therefore, exploring techniques
for effectively training the detector under conditions of imper-
fect data is critical. Moreover, enhancing the robustness of the
proposed detector against adversarial attacks will significantly
improve diagnostic reliability. Lastly, there is a demand to design
lightweight detectors, especially for mobile and point-of-care
applications.
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