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A B S T R A C T

Coaxiality is a critical indicator of assembly accuracy in aero-engines, directly impacting the device’s
operational performance and lifespan. Due to the enclosed nature of the aero-engine casing system, measuring
the coaxiality of assembled components presents significant challenges. This paper introduces a novel deep
learning architecture, the spatially embedded transformer (SETrans), designed to predict coaxiality from
unassembled part data by correlating it with the contact surface points of assembled components. Additionally,
a virtual measurement model is developed to collect micron-scale point cloud data, facilitating the fine-
tuning of the deep learning model. The SETrans utilizes the transformer’s capability for global information
aggregation to process point cloud inputs, capturing the comprehensive relationships across assembled surfaces.
A newly designed module, the spatial bias, integrates distance and angular information between neighboring
point clouds into the transformer block, enhancing the model’s ability to capture fine-grained local details.
Experimental validation is conducted using two distinct datasets representing different assembly scenarios:
the aero-engine casing, sampled using contact-based coordinate measuring machines, and the rotor, sampled
using non-contact optical gaging products. These specific sampling methods test the generalizability of the
SETrans across diverse measurement techniques. Comparative analysis with other point cloud deep learning
benchmarks shows that the proposed approach achieves top prediction accuracies of 93.65% and 94.31% with
a coaxiality precision of 0.01 mm across different data domains. These results confirm the effectiveness of the
SETrans and demonstrate its adaptability to real-world assembly conditions involving various components.
1. Introduction

Coaxiality is a fundamental measure of assembly accuracy in aero-
engines, influencing key operational aspects such as failure rates, re-
liability, dynamic balance, and vibration. Errors in coaxiality, which
often arise during the assembly process, directly affect the engine’s
performance [1]. The assembly of casings and rotors, as illustrated in
Fig. 1, plays a pivotal role in ensuring engine coaxiality [2]. Accurate
predictions of coaxiality between these components prior to assembly
are essential for maintaining the engine’s operational stability.

The intricate and enclosed structure of aero-engines makes the
direct measurement of coaxiality for internal components, such as
shaft holes, impractical. Various methods have been explored to pre-
dict coaxiality. Notably, digital twin methods [3] and virtual reality
methods [4] have been employed in aero-engine assembly. However,
these digital models are typically low-precision and require substantial
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computational resources to ensure visual and operational effectiveness.
The dimensional chain calculation method simplifies coaxiality predic-
tion by transforming three-dimensional problems into one-dimensional
issues, gaining popularity for its straightforward approach [5]. The
Jacobian-Torsor model [6] combines the Jacobian matrix with toler-
ance zone representations, reducing prediction errors that arise from
the non-rigidity of assembled parts. Zhang et al. [7] further enhances
this approach by integrating error propagation with homogeneous
transformation matrices (HTM) to analyze linear and rotational mo-
tion effects on coaxiality errors. These methods, represented by HTM
and Jacobian-Torsor, significantly streamline complex assembly process
calculations and minimize redundant computations. Nevertheless, they
often overlook the effects of non-uniform machining errors, or geomet-
ric distribution errors (GDE), of contact surfaces on assembly, which
can compromise the realism of the contact model and the precision of
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data mining, AI training, and similar technologies. 
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Fig. 1. Coaxiality in aero-engine assembly.

the assembly model. To account for GDE in assembly accuracy predic-
tions, skin model shapes are constructed using either dense point clouds
or triangular meshes [8,9]. However, the demand for dense (over 1000
points) and high-precision (measured in microns or sub-microns) point
clouds for accurate coaxiality prediction is cost-prohibitive on aero-
engine production lines. In response, this paper introduces a virtual
measurement method that merges real unassembled part measurements
with virtual coaxiality calculations. This approach enhances point den-
sity through GDE reconstruction while preserving the accuracy of initial
high-precision point clouds, thus reducing the cost of individual surface
measurements. It establishes a correlation between point clouds and
coaxiality within assembly datasets through virtual assembly and the
Monte Carlo method.

Virtual measurement methods have made strides in predicting coax-
iality but often necessitate frequent adjustments to model parameters
based on contact states during each prediction cycle. Moreover, in-
troducing a new pair of surfaces requires remodeling, significantly
increasing labor and computational costs. To bypass these drawbacks
and enable automatic and efficient coaxiality prediction, establishing
a direct link between aero-engine point clouds and assembly coaxi-
ality is essential. Deep learning, a framework capable of managing
nonlinear equations through millions of parameters, effectively estab-
lishes end-to-end mapping relationships between discrete data sets and
corresponding physical labels [10]. With point cloud deep learning,
getting the prediction coaxiality directly from a trained network and
input point cloud is possible. According to the input data format,
point cloud deep learning methods are categorized into three types:
view-based, volumetric, and point-based [11]. As for the view-based
methods, the point cloud data are transferred to images via different
angles projection [12–14]. The neural network processes the images to
obtain the objects’ features. Avoiding the information loss inherent in
converting 3D points to 2D images, the volumetric method voxelizes
the unstructured point cloud to a structured 3D grid. Subsequently, 3D
convolutional neural networks (CNN) are applied to the integrated data
format for 3D shape classification [15–17]. However, both methods
involve transforming point cloud data, leading to high computational
and memory costs, and they may not scale efficiently with dense 3D
data. To end this, PointNet [18], the pioneer of the point-based method,
directly processes the original 3D point cloud and realizes the label
prediction. The disorder and unstructured point clouds are processed
by symmetric multi-layer perception (MLP) to guarantee invariance
under permutations and rotation. The dominance of the point-based
method is established due to the high computational efficiency and
accuracy, which benefits from the use of original point clouds. Based
on PointNet, PointNet++ [19] incorporates hierarchical MLP struc-
tures to capture local point cloud features efficiently and robustly.
2 
PointCNN [20] redefines the convolutional operator to process irregu-
lar point clouds, enabling the application of CNNs to raw point clouds.
InterpCNN [21] interpolates the CNN weights with the point cloud
coordinates, achieving the integration of physical properties and deep
networks. DGCNN [22] feeds the point set into the graph convolutions
and densely connects the local features. DeepGCNs [23] expands the
complexity of the point cloud baseline and analyzes the relationship
between the network depth and 3D scene understanding. Despite the
efficiency in handling raw point cloud data, point-based deep learning
methods face challenges in prediction performance due to the potential
loss of global information. Current point cloud deep learning architec-
ture, including the MLP and CNN, primarily focuses on aggregating
neighboring points. However, due to the inherent disorder within
point clouds, each point’s position crucially impacts the object’s pose
and, consequently, network performance. Thus, the global relationships
among different points cannot be overlooked, emphasizing the need for
methods that can effectively capture both local and global structures
within point clouds.

Recently, the transformer has become dominant in natural language
processing [24,25] and image analysis [26,27] due to the global in-
formation extraction capability via the self-attention mechanism [28].
It outperforms traditional MLP and CNN and realizes top performance
across a variety of downstream tasks. The self-attention mechanism’s
invariance to the permutation and cardinality of inputs [29] aligns well
with the nature of point clouds as sets in 3D space, making transformers
an ideal choice for point cloud deep learning. In this work, the trans-
former block is integrated into coaxiality prediction tasks, introducing
a new point cloud deep learning backbone: SETrans. SETrans enables
end-to-end coaxiality prediction and is evaluated alongside established
point cloud deep learning baselines. To verify the generalization of
SETrans, two datasets are derived from distinct aero-engine compo-
nents: the casing and the rotor, sourced from simulated real parts. These
datasets are created using different sampling techniques, specifically a
contact-based coordinate measuring machine (CMM) and non-contact
optical gaging products (OGP), to establish unique data domains for
each set. The virtual measurement method is employed to augment the
raw data, ensuring it meets the training specifications of the deep learn-
ing model while also reducing the costs associated with data collection.
SETrans is then tested across these domains and benchmarked against
other point cloud deep learning methods to validate its effectiveness
and generalizability.

The rest of this paper is organized as follows: Section 2 provides
a review of point cloud transformers. Section 3 briefly introduces
the total architecture of the end-to-end coaxiality prediction system.
Section 4 elaborates on virtual measurement method and dataset con-
struction processes. Section 5 shows the total architecture of SETrans
and the sub-module of this new backbone. Section 6 compares SETrans
with other point cloud deep learning baselines and tests it in two
different assembly parts. Section 7 draws the main conclusions.

2. Review of point cloud transformer

Due to the invariance to permutation and cardinality of input
elements, transformer family models are well-suited for point cloud
inputs [30]. Point2sequence [31] was a pioneer in applying global
attention to entire point clouds, achieving effective global feature
extraction. However, it lacks applicability for large-scale 3D scene
understanding. The PCT [32] hybridizes the self-attention design of
the Vision Transformer [33] with point cloud data formats, creating a
pure point cloud transformer architecture. This approach introduces the
𝑙1𝑁 𝑜𝑟𝑚 to the attention feature map, ensuring the model’s feasibility on
large datasets. Similarly, the contemporaneous point cloud transformer
aims to handle size-varying inputs. The Set Transformer [34] models
interactions among input elements for better feature aggregation, while
PATs [35] introduce shuffle attention to achieve a larger receptive field.
These innovations enhance prediction performance for large-size point
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Fig. 2. Framework overview.
cloud inputs but at the cost of increased computational demand. To end
this, PT V1 [29] incorporates vector attention [36] into the transformer
architecture, reducing the computational load between feature maps
and alleviating memory issues. Building on this, PT V2 [30] simplifies
vector attention further, enhancing computational efficiency. Despite
its advancements, PT V2 struggles with collecting local information,
leading to challenges in training convergence with limited data. Ad-
ditionally, current point cloud transformers are generally designed for
general tasks and are seldom utilized in precision assembly fields.

To bridge these gaps, this work introduces a novel transformer back-
bone, SETrans, which integrates spatial information from neighboring
point clouds into the self-attention block to enhance local informa-
tion aggregation. Two datasets consisting of aero-engine components
have been constructed to evaluate the usability and generalizability of
SETrans in industrial assembly contexts.

3. Method overview

This study develops an end-to-end point cloud deep learning frame-
work to realize high-precision and high-efficiency coaxiality prediction.
The proposed coaxiality prediction system consists of three integrated
modules, as shown in Fig. 2.

In the first step, the virtual measurement method is designed to con-
struct the relationship between unassembled surface point clouds and
their corresponding coaxialtiy. This involves sampling high-precision
points from simulated real aero-engine parts and reconstructing them
through a non-uniform rational B-splines (NURBS) surface model for
upsampling. These upsampled point clouds are then utilized within a
virtual assembly model that constructs the assembled relationships and
enables various combinations for effective data augmentation.

Then, in the second step, all these augmented data are randomly
split into a training set and test set to construct a point cloud dataset
for subsequent deep learning training.

In the third step, SETrans is designed to realize better performance
on the point clouds feature extraction task. This transformer integrates
spatial information as a bias to the feature map, optimizing the use of
angle and distance information between neighboring point clouds and
demonstrating the enhanced capabilities of the proposed architecture
in managing point domain data.

Finally, in the fourth step, the trained model establishes a mapping
relationship between the point cloud data and assembled coaxiality,
3 
facilitating an end-to-end prediction from points input in unassembled
conditions. The performance and generalizability of SETrans are eval-
uated using two different types of simulated aero-engine flange com-
ponents. Additionally, the online prediction results of SETrans and the
virtual measurement models are visually displayed using t-distributed
stochastic neighbor embedding (t-SNE) and a chord diagram, providing
an intuitive evaluation of the model’s effectiveness. This comprehensive
approach leverages advanced virtual modeling and deep learning tech-
niques to enhance accuracy and efficiency in coaxiality prediction for
industrial applications.

4. Virtual measurement for aero-engines

In aero-engine assembly, directly measuring the coaxiality of inter-
nal assembled components such as bearing mounting holes and rotor
shafts is impractical due to the enclosed assembly structure. The virtual
measurement method in this paper provides a solution for coaxiality
prediction by integrating real part measurements with virtual coaxiality
calculations. This method enhances point density through GDE recon-
struction while preserving the accuracy of the original high-precision
point clouds, thus reducing the costs associated with individual surface
measurements. Additionally, the assembly dataset created through this
virtual measurement method is used to train SETrans, an end-to-end
coaxiality prediction model that streamlines the process by eliminating
the need for frequent adjustments to the virtual assembly model.

4.1. Process of virtual measurement

The virtual measurement for aero-engine coaxiality is illustrated in
Fig. 3. After parts measurement for high-precision point clouds in phys-
ical space, dense point clouds are obtained by geometric distributed
error reconstruction in digital space, and coaxiality is calculated by the
virtual assembly. The mapping between the high-precision point clouds
and the coaxiality of a single aero-engine is established. Moreover, for
aero-engine coaxiality prediction in mass production, large volumes of
high-precision dense point clouds are obtained by data augmentation,
and large volumes of aero-engine coaxiality are calculated by the
single aero-engine virtual measurement and Monte Carlo method. The
assembly dataset that maps between the point clouds and the coaxiality
for SETrans model training is established.
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Fig. 3. Process of virtual measurement.
Fig. 4. Geometric distributed error of aero-engine modeling.

4.2. Geometric distributed error reconstruction

To maintain data accuracy, the NURBS method is used to interpolate
and model the measured point cloud in GDE reconstruction. Compared
to analytic models, NURBS can reconstruct complex geometric shapes
with greater accuracy. The NURBS surface is a continuous free-form
surface that accurately and comprehensively describes the GDE of the
aero-engine surface [37]. A NURBS surface with 𝑝 degree in the 𝑢
direction and 𝑞 degree in the 𝑣 direction is defined as Eq. (1).

𝑆(𝑢, 𝑣) =
∑𝑚
𝑖=0

∑𝑛
𝑗=0𝑁𝑖,𝑝(𝑢)𝑁𝑗 ,𝑞(𝑣)𝑤𝑖,𝑗𝑃𝑖,𝑗

∑𝑚
𝑖=0

∑𝑛
𝑗=0𝑁𝑖,𝑝(𝑢)𝑁𝑗 ,𝑞(𝑣)𝑤𝑖,𝑗

=
𝑚
∑

𝑖=0

𝑛
∑

𝑗=0
𝑁𝑖,𝑝(𝑢)𝑁𝑗 ,𝑞(𝑣)𝑃𝑤𝑖,𝑗 , 0 ⩽ 𝑢, 𝑣 ⩽ 1

(1)

Where, u and v represent knot parameters, 𝑁𝑖,𝑝(𝑢) and 𝑁𝑗 ,𝑞(𝑣) are
the B-spline basis functions determined by knot vectors U and V . 𝑤𝑖,𝑗
is the control point weight factor and 𝑃𝑖,𝑗 is the surface control point.
GDE reconstruction for aero-engine part surfaces is illustrated in Fig. 4.
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The measured point cloud is interpolated by the double cubic NURBS
surface to establish the GDE surface model. Then, the GDE surface
model is discretized into the dense point cloud for virtual assembly and
coaxiality calculation. As shown in Fig. 4, the reconstructed dense point
cloud maintains the GDE information of the initial measured point
cloud while predicting the GDE information of the surface. The visu-
alized GDE solid part model of the aero-engine part is also illustrated
in Fig. 4.

4.3. Virtual assembly and coaxiality calculation

According to the assembly structure of the aero-engine, coaxiality is
calculated using the coordinate values of the shaft and hole point clouds
within the Reference Coordinate System (RCS). These coordinate values
are derived from the initial coordinates in the Feature Coordinate
System (FCS), taking into account the position and posture of the shaft
and hole surfaces as shown in Eq. (2). In the virtual assembly process,
the positioning and orientation of one part are determined based on two
parameters: the position and posture of the assembly datum, which is
a surface on the preceding assembly part, and the minor translational
and rotational errors induced by the contact between two GDE surfaces.
Virtual assembly and coaxiality calculation for a single aero-engine, as
illustrated in Fig. 5, involves calculating three contact points and the
position and posture of the part within the Assembly Motion Coordinate
System (MCS) using the difference surface method. The position and
posture of each part, along with the coordinate values of the shaft and
hole point clouds in the RCS, are computed using the HTM method.
Finally, the coaxiality of both the casing system and rotor system is
determined using these point clouds.

1
𝑃 𝑣 is the unknown coordinate value of the point cloud in RCS. 𝑛𝑃 𝑣

is the known coordinate value of the point cloud in FCS. 1
𝑃 𝑣 can be

calculated with 𝑛
𝑃 𝑣 and 1

𝑛𝐇 by HTM method, as shown in Eq. (2).

1
𝑃 𝑣 =

1
𝑛𝐇

𝑛
𝑃 𝑣 =

( 𝑛
∏

𝑘=1

𝑘
𝑘+1𝐇

)

𝑛
𝑃 𝑣 (2)

Where, 1
𝑛𝐇 represents the position and posture of FCS in RCS. 𝑘𝑘+1𝐇

represents the position and posture of (k+1)th coordinate system in
kth coordinate system. Considering assembly limit structures, such as
rabbet and dowel pin, degrees of freedom of X, Y, and C in MCS are
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Fig. 5. Virtual measurement of coaxiality.
limited. Equivalently, dx = dy = 0, sin 𝜃 𝑧 = 0, and cos 𝜃 𝑧 = 1. Therefore,
HTM of MCS can be simplified as shown in Eq. (3). Where, 𝜎 = 𝑘

𝑘+1𝜃 𝑥,
𝜍 = 𝑘

𝑘+1𝜃 𝑦 and 𝜏 = 𝑘
𝑘+1𝑑 𝑧 represent translation and rotation of (k+1)th

coordinate system in kth coordinate system.

𝑘
𝑘+1𝐇 =

⎡

⎢

⎢

⎢

⎢

⎣

cos 𝜍 0 sin 𝜍 0
sin 𝜎 sin 𝜍 cos 𝜎 − sin 𝜎 cos 𝜍 0

− cos 𝜎 sin 𝜍 sin 𝜎 cos 𝜎 cos 𝜍 𝜏
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

(3)

In the context of mass production, measuring coaxiality presents
significant cost challenges. To address this, a virtual measurement
approach combined with the Monte Carlo method is utilized to predict
coaxiality in large-scale production scenarios, as illustrated in Fig. 6.
Initially, high-precision real measurements of a small sample set are
used to obtain GDE point clouds. These initial point clouds are then
augmented using production files, which include recorded information
on part characteristics such as flatness and cylindricity, to generate
a sufficient quantity of augmented GDE point clouds. In simulating
parts selection during mass production, the Monte Carlo method is
employed, allowing for the calculation of coaxiality through virtual
measurement for an individual aero-engine. Ultimately, this process
enables the calculation of coaxiality across the mass production of
aero-engines and facilitates the establishment of an assembly dataset.

5. Spatially embedded transformer model

Following the virtual measurement method, the massive assem-
bly surfaces are prepared. However, the calculation process is time-
consuming and requires experienced engineers to build 3D models
for every workpiece. To save the modeling costs, deep learning is
introduced to realize end-to-end coaxiality prediction with input point
clouds instead of tedious math calculations. For better performance, a
new point cloud deep learning backbone, SETrans, has been developed.
This model is designed specifically for point cloud data, incorporat-
ing spatial information to enhance feature extraction and efficiency,
thus facilitating more accurate coaxiality assessments in aero-engine
assembly.

5.1. Total architecture of SETrans

The total architecture of SETrans is illustrated in Fig. 7. The model
establishes a projection relationship between the input point clouds 𝑃
5 
Fig. 6. Virtual measurement of mass production.

and the corresponding coaxility . The input 𝑃 =
{

𝑝𝑖 ∈ R3, 𝑖 = 1, 2,… ,
𝑁} comprises 𝑁 points for a pair of assembly surfaces, where each
point 𝑝𝑖 is represented by its 3D coordinates

(

𝑥𝑖, 𝑦𝑖, 𝑧𝑖
)

. These coor-
dinates are presented with a channel size of three and are processed
through a stem that utilizes two multilayer perceptrons (MLP) to extend
the data to 32 channels. Guided by the principles outlined in trans-
former diagrams [33,38], SETrans incorporates layer normalization in
place of batch normalization and employs the Gaussian Error Linear
Unit (GeLU) as the activation function, replacing the traditional Recti-
fied Linear Unit (ReLU). After the stem, the point clouds undergo four
stages of feature map rescaling, where the channel size is expanded to
512, and the number of points is reduced to one in 256. Each stage
consists of a transition down layer and a feature extractor layer.
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Fig. 7. The total architecture of SETrans.
The transition down layer doubles the receptive field and establishes
a global correlation of information among point cloud neighborhoods.
It segments the input features into 𝑁∕𝑤 groups, each managing 𝑤
examples. To prevent repeated sampling in dense points and missing
sampling in sparse areas, a window partition strategy is proposed to
replace traditional KNN grouping. This approach uses the spliced 3D
space for partitioning, moving away from reliance solely on point-
to-point distances. After the window partition, an MLP is inserted to
realize map extension and a reduction layer is used to reshape the fea-
ture map to three dimensions. This approach uses the spliced 3D space
for partitioning, moving away from reliance solely on point-to-point
distances.

A novel design, a spatial bias transformer block, is proposed to
realize high-precision prediction. To manage computational demands, a
bottleneck design is implemented, featuring two MLP layers positioned
on either side of the spatial bias transformer block. The previous MLP
compresses the feature with r ratio, and the subsequent MLP restores
the feature size after the transformer block. Notably, r is set to one in
the initial stages to ensure robust information interaction due to the
lower receptive fields and is increased to two in later stages to align
with channel expansion. Similar to the stem, the layer norm realizes
the normalization, and GeLU works as the activation function. A skip
link and a drop path are also integrated to enhance model stability and
convergence, helping to prevent the vanishing gradient problem.

After the feature extraction, a symmetry layer is introduced to
aggregate the number channel, realized by max pooling in this work. Fi-
nally, three fully connected layers, configured as [256, 128, 𝐶], link the
classifier and are equipped with a sigmoid function and cross-entropy
loss function. The layer norm and dropout layer are inserted into the
fully connected layers to prevent gradient vanishing and guarantee the
model converges.

5.2. Spatial bias transformer block

Transformer, pivotal in revolutionizing downstream tasks in 2D im-
age processing, adapts effectively to point cloud inputs by aggregating
global information. Unlike regular image data, disordered point clouds
challenge traditional vision transformer blocks due to their lack of in-
herent order. To address this, spatial information about point neighbors
6 
is integrated into the transformer block, enhancing the relationships
within disordered point clouds. This integrated information acts as a
bias to enrich the Query, Key, and Value feature maps. A new module,
the spatial bias transformer, has been designed, as detailed in Fig. 8.

The input feature map 𝑝𝑖 is denoted as R𝐵×𝑁×𝐶 , where 𝐵 is the batch
size, 𝑁 presents the number of points, and 𝐶 is the current feature
map size. Drawing from PCT V2 [30], the attention feature map is
generalized by input 𝑝𝑖 and its sampled neighbor 𝑝𝑗 = 

(

𝑝𝑖
)

∈ R𝐵×𝐾×𝐶 .
The Query, Key and Value are generalized by feature transformations,
denoted as: 𝑄 = 𝑙1

(

𝑝𝑖
)

, 𝐾 ,𝑉 = 𝑙2,3
(

𝑝𝑗
)

, where 𝑄,𝐾 ,𝑉 ∈ R𝐶𝑄,𝐾 ,𝑉 . To
balance the bottleneck design and reduce computation, the 𝑄, 𝐾 and
𝑉 are maintained at the same output channel size 𝐶. Due to the point
clouds having inherent information between the point space distance,
the scalar attention feature map design in the vanilla transformer is
replaced with vector attention in this work. The vector attention is
generated by the Query and Key using a subtraction function rather
than a scaled dot product, formulated as follows:

𝑆 𝐸 𝑇 𝑟𝑎𝑛𝑠 = 𝛼
(

𝜆 ⋅ 𝜓
(

𝑄,𝐾
))

⊙ 𝑉 (4)

Here, 𝜓 represents the relation function for vector calculation be-
tween 𝑄 and 𝐾 , implemented as matrix subtraction. 𝜆 is a learnable
parameter to realize feature fusion, and 𝛼 is the softmax for attention
feature map generalization. ⊙ denotes the Hadamard product for the
final feature map. To utilize the 3D position information between the
input 𝑝𝑖 and its neighbor 𝑝𝑗 , spatial information is calculated and added
as a bias in Eq. (4). The bias is defined as:

𝛿𝑑 𝑖𝑠 = 𝛥𝑝𝑖𝑗 =
(

𝛥𝑥𝑖𝑗 , 𝛥𝑦𝑖𝑗 , 𝛥𝑧𝑖𝑗
)

(5)

𝛿𝑎𝑛𝑔 = cos 𝛼 + cos 𝛽 (6)

cos 𝛼 =
√

(

𝛥𝑥𝑖𝑗
)2 +

(

𝛥𝑦𝑖𝑗
)2∕ ||

|

𝛥𝑝𝑖𝑗
|

|

|

(7)

cos 𝛽 = |

|

|

𝛥𝑦𝑖𝑗
|

|

|

∕
√

(

𝛥𝑥𝑖𝑗
)2 +

(

𝛥𝑦𝑖𝑗
)2 (8)

𝛿 = 𝜃1
(

𝛿𝑑 𝑖𝑠
)

+ 𝜇 ⋅ 𝜃2
(

𝛿𝑎𝑛𝑔
)

(9)

𝛿𝑑 𝑖𝑠 is the bias integrating the spatial distance information. 𝛥𝑝𝑖𝑗 is
the Euclidean distance set calculated by the input points 𝑝 and their
𝑖
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Fig. 8. Spatial bias transformer block.
sampling neighbor 𝑝𝑗 . 𝛿𝑎𝑛𝑔 is the concatenation of the altitude angle
cos 𝛼 and the azimuth angle cos 𝛽 for enriching the geometric features.
The spatially embedded bias 𝛿 is the integration of distance bias 𝛿𝑑 𝑖𝑠
and angle bias 𝛿𝑎𝑛𝑔 . To ensure the module convergence, two MLP layers
𝜃1 and 𝜃2 are employed to modify the 𝛿𝑑 𝑖𝑠 and 𝛿𝑎𝑛𝑔 . 𝜇 is a learnable
parameter normalizing the data dimensions to ensure balanced bias
fusion. Finally, the bias is inserted into the attention feature map,
rewriting Eq. (4) as follows:

𝑆 𝐸 𝑇 𝑟𝑎𝑛𝑠 = 𝛼
(

𝜆 ⋅ 𝜓
(

𝑄,𝐾
)

+ 𝛿
)

⊙
(

𝑉 + 𝛿
)

(10)

The spatially embedded information enhances comprehensive ge-
ometric information capture and coheres point cloud feature map
cooperation, crucial for handling complex point cloud data. However,
this combination increases the feature encoding channels and raises the
risk of computational redundancy. To overcome the weight increase
with the expanding of receptive fields, a group design is introduced in
the attention feature map fusion process. The feature of Value 𝑉 is
split into 𝑔 groups and reshaped to R𝐵×(𝑛𝑔)×𝐶𝑉 . The 𝑛 is the number of
group records as 𝑛 = 𝐾∕𝑔. Each group shared the attention feature map
generated by Query and Key. To fit the group size, the Value feature
map is resized to R𝐵×𝑔×𝐶 with a pointwise convolution (recorded as
PWCONV in Fig. 8) and all the QK feature maps share the same
Value attention in each group. With the group process, the 𝑆 𝐸 𝑇 𝑟𝑎𝑛𝑠
is rewritten mathematically,

𝑆 𝐸 𝑇 𝑟𝑎𝑛𝑠 =
𝐾∕𝑔
∑

𝑛=1
𝛼
(

𝜆 ⋅ 𝜓
(

𝑄,𝐾
)

+ 𝛿
)

⊙ 𝑆 𝑚(𝜈 (𝑉 + 𝛿
)

) (11)

The 𝜈 is a learnable parameter to help adjust the size of 𝑉 and 𝑆 𝑚
indicates the 𝑆 𝑜𝑓 𝑡𝑚𝑎𝑥 layer. The final feature map is the mixture of
𝑛 groups. After the Hadamard product, the 𝑆 𝐸 𝑇 𝑟𝑎𝑛𝑠 is fed to an MLP
with GeLU activation and LayerNorm. All the attention informations
are fused and transported to the next layer.

5.3. Window partition point clouds sampling

The point cloud deep learning diagrams, such as PointNet [18],
DGCNN [22], and PointNext [39], leverage sampling and encoding
7 
methods to realize the pooling procedure, as shown in Fig. 9. The
farthest point [19] and grid sampling [40] are often chosen to sample
the center point for the following neighborhood encoding process. After
initial sampling, KNN grouping is introduced to gather the neighboring
area points to aggregate the spatial information. Subsequently, the
pooling layer resamples the point clouds and reduces the data dimen-
sion for network training. In the traditional sampling process, point
clouds may be duplicated or omitted due to uncontrollable informa-
tion density and overlap in the input. Such oversampling not only
diminishes the prediction accuracy but also increases computational
complexity. To address these issues, the window partition point clouds
sampling method is introduced for enhanced efficiency.

As shown in Fig. 9, window partition point cloud sampling splits the
input point clouds 𝑃 =

(

𝑝𝑖, 𝑓𝑖
)

, 𝑖 ∈ (1, 𝑁) to 𝐾 subsets
[

𝑃1, 𝑃2, 𝑃3,… , 𝑃𝐾
]

. Each subset 𝑃𝐾 =
(

𝑝𝑘, 𝑓𝑘
)

, contains the position in-
formation 𝑝𝑘 and its corresponding feature map 𝑓𝑘. Different from KNN
grouping, the window partition directly separates the space instead of
calculating the distance between the center point and other sampling
points. The non-overlapping spatial separation ensures that points are
neither repeatedly sampled nor missed. Additionally, omitting spatial
distance calculation ehances calculation efficiency. After the window
partition, each group functions similarly to a KNN group, and a pooling
layer is employed to condense the information of related points. The
position 𝑝𝑘 passes through a mean pool layer to derive the new
sampled position 𝑝′𝑘, while, the feature 𝑓𝑘 undergoes a combination
of Maxpool and MLPs to produce the transformed feature 𝑓 ′

𝑘. The MLP
is specifically designed to adjust feature sizes to ensure compatibility
with subsequent network stages.

6. Experiment

This section evaluates the SETrans with the point cloud datasets es-
tablished from aero-engine simulated workpieces, comparing it against
other state-of-the-art (SOTA) point cloud deep learning methods.
Datasets for casing and rotor assembly scenarios are created to test
the proposed system thoroughly. To assess the model’s generalization
capabilities, these two datasets are sampled using different devices,
ensuring diversity across data domains.
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Fig. 9. Point clouds down sampling comparison.

Fig. 10. CMM contact sampling.

6.1. Case 1: engine casing assembly with contact sampling

In this experiment, the focus is on an engine casing assembly dataset
sampled using CMM contact techniques. The SETrans model, along with
seven other backbone architectures, is tested using this high-precision
input data.

6.1.1. Data description
The point clouds are measured by the Hexagon Leitz PMM-XI12107

CMM with ±(0.5 + 𝐿∕500) μm, as shown in Fig. 10. Fourteen aero-
engine simulated parts are designed and processed to generate the
assembly casing surface. The original point clouds are modeled by
the GDE modeling illustrated in Section 3 and are used to calculate
coaxiality values for the assembly. Each surface contains 1600 point
clouds. The generated surfaces are augmented with weight combina-
tions, rotation, function addition, error scaling, mirroring, noise signal
8 
Table 1
Details of dataset.

Tier Coaxiality value (mm) Grade

T0 0
Premium GradeT1 0.01

T2 0.02

T3 0.03
Qualified GradeT4 0.04

T5 0.05

T6 0.06
Reprocessed GradeT7 0.07

T8 0.08

T9 0.09
Substandard GradeT10 0.1

T11 >0.1

Table 2
Hyperparameter configuration.

Config Value

Batch size 24
Epoch 500
Drop rate 0.2
Learning rate 0.002
Optimizer Adam, betas = (0.9,0.999)
StepLR Step size = 20, gamma = 0.7
Decay rate 0.0002
n_points 1024

addition, and filtering to match more actual assembly situations. The
dataset is categorized into twelve classes based on different coaxiality
values, ranging from T0 to T11, as detailed in Table 1. The classes are
further grouped into four grades, reflecting the assembly quality in real-
world scenarios. The entire dataset comprises 4800 examples, with 80%
(3840 examples) designated for training and the remaining 20% (960)
reserved for testing. Each class is evenly represented with 400 samples.
Visualizations of the assembly surface point clouds for different classes
are shown in Fig. 11.

6.1.2. Experiment setting
The SETrans are programmed in Pytorch (1.9.0) with Python

(3.8.11). The model is trained on a workstation with a CPU of Intel
Xeon Platinum 8375C @2.90 GHz and an NVIDIA GeForce RTX 3090
GPU with 24 GB memory using the PyCharm. The model configuration
for training includes a batch size of 24 and an input size of 1024
points per sample. Adam optimizer is chosen with a 0.002 learning
rate and 0.9 𝛽1, 0.999 𝛽2. A learning rate decay strategy is incorporated
to enhance both training speed and model convergence accuracy. The
learning rate declines in 0.0002 rate and renews in every 20 epochs
with 0.7 𝛾. The training process lasts 500 epochs with a 0.2 drop rate.
Specific values of the hyperparameters are detailed in Table 2.

To verify the high precision of spatially embedded design and
calculation simplification of window patching, the training process of
SETrans and modification baseline PCT are compared in Fig. 12. The
training loss and accuracy exhibit swift alterations and retain their
initial trajectory during the first 20 epochs, a phenomenon attributable
to the substantial learning rate at the onset of the training process. The
learning rate decay strategy is applied in the later epochs, promoting
stable training loss and successful model convergence. Benefitting from
the window partition, the SETrans has a significantly more rapid de-
cline than PCT in the first 50 epochs training stages (0.089 compared
to 0.283), highlighting the effectiveness of this design in helping to
reduce computing costs. By the 500th epoch, both models achieve
stable training losses, indicating good convergence. At the completion
of training, SETrans shows a lower training loss (0.014 vs. 0.063),
confirming its superior performance and the benefits of its design.
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Fig. 11. Visualization of casing samples in different tiers.
Fig. 12. Training process.

6.1.3. Experiment results
In this section, accuracy (Acc), recall (Rec), precision (Pre), and F1-

score (F1) are used to assess the coaxiality prediction performance of
the proposed SETrans. These four criteria are defined as

𝐴𝑐 𝑐 = 𝑁𝑇 𝑃 +𝑁𝑇 𝑁
𝑁𝑇 𝑃 +𝑁𝑇 𝑁 +𝑁𝐹 𝑃 +𝑁𝐹 𝑁

𝑅𝑒𝑐 =
𝑁𝑇 𝑃

𝑁𝑇 𝑃 +𝑁𝐹 𝑁
𝑃 𝑟𝑒 = 𝑁𝑇 𝑃

𝑁𝑇 𝑃 +𝑁𝐹 𝑃
𝐹1 = 2 × 𝑃 𝑟𝑒 × 𝑅𝑒𝑐

𝑃 𝑟𝑒 + 𝑅𝑒𝑐

(12)

Where 𝑁𝑇 𝑃 , 𝑁𝐹 𝑃 , 𝑁𝑇 𝑁 , 𝑁𝐹 𝑁 denote the number of true positives,
false positives, true negatives, and false negatives, respectively. SETrans
is benchmarked against multiple models, including MLP-based point
cloud deep learning baseline PointNet and its modification model, the
PointNet++, and PointNext . Additionally, the SOTA method of graph
neural network, the DGCNN, is tested in the engine coaxiality dataset.
Due to the proposed SETrans being implemented with the transformer
mechanism, the transformer-based point clouds deep learning baseline,
PT V1, PT V2, and PCT [32] are also tested in this dataset with
these four criteria. The test results from Table 3 indicate that SETrans
outperformed all other models in the engine sleeve assembly task with a
top accuracy of 93.65%. PointNet, limited by its shared MLP structure,
scored the lowest accuracy at 87.50%, and PointNet++ also fell short
of reaching 90% accuracy. Among the MLP-based models, PointNext
performed the best with an accuracy of 91.888%. In the transformer
9 
Table 3
Test result.

Model Acc Recall Precision F1-score

PointNet 0.8750 0.8722 0.8688 0.8702
PointNet++ 0.8927 0.8854 0.8891 0.8863
DGCNN 0.9010 0.8987 0.8916 0.9028
PointNext 0.9188 0.9116 0.9159 0.9092
PT V1 0.8958 0.8852 0.8933 0.8996
PT V2 0.9083 0.9107 0.9024 0.8869
PCT 0.9157 0.9153 0.9006 0.9183
This paper 0.9365 0.9306 0.9279 0.9348

category, PCT led with a 91.57% accuracy, benefiting from its global
aggregation architecture. SETrans topped the accuracy metric and led
in recall, precision, and F1-score, showing gains of 1.53%, 1.2%, and
1.65% points, respectively over the next best performer, PointNext.
These results underscore the effectiveness and reliability of SETrans
in coaxiality prediction tasks, which are crucial for high-precision
assembly.

The test results of SETrans, as detailed in Fig. 13 and Fig. 14,
provide a comprehensive analysis of its performance in coaxiality pre-
diction across different tiers of aero-engine assembly. The confusion
matrix visualized in Fig. 13 indicates that all tiers achieve high ac-
curacy, exceeding 90%, with T0 showing exceptional performance at
98.75% accuracy. The remaining four tiers also register accuracies
above 95%, underscoring the reliability of SETrans in this task. In
the context of aero-engine assembly, it is crucial to manage coaxiality
errors within acceptable limits, as categorized in Table 1. Evaluation
of the prediction results based on error grades, as depicted in the
chord diagram (Fig. 14), shows distinct connections. Colored lines
link misjudgments within the same error grades, whereas gray lines
connect misjudgments across different grades. Significantly, there are
no misjudgments between premium and substandard, highlighting the
stability of SETrans and its ability to prevent severe misclassifications
that could lead to the scrapping of high-quality parts. Considering
misjudgments within the same error grade as acceptable, T9 sees a
prediction accuracy increase from 92.5% to 98.8%, a 6.3 percent-
age point improvement. Similarly, the overall accuracy of SETrans
across the dataset improves by 3.02 percentage points, from 93.65% to
96.67%. The detailed visualization shows that SETrans realizes stable
predictions in each tier and has the potential for further enhancements
in real-world applications.

The Average Precision (AP) curve, depicted in Fig. 15, highlights
the performance of SETrans compared to seven other baseline models
in the coaxiality prediction task. In the MLP-based models, Point-
Next leads with an AP of 92.1, the highest among the baselines. The
transformer-based model, PCT, closely follows with an AP of 91.9.
SETrans surpasses both, achieving the highest AP in the dataset at
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Fig. 13. Confusion matrix visualization for case 1.

Fig. 14. Chord diagram based on casing assembly.

94.2, indicating a 2.1 point gain over PointNext. This superior AP value
underscores the robust performance of SETrans, characterized by high
accuracy and stability.

SETrans integrates spatially embedded information into the trans-
former feature map to enhance efficiency in information utilization.
Controlled experiments were conducted to evaluate the effectiveness of
this spatially embedded design. The spatial bias (𝛿) was tested in differ-
ent configurations: linked solely to the attention map branch generated
by Query and Key, connected only to the feature transformation branch
generated by Value, and implemented in both branches. A baseline
10 
Fig. 15. AP comparison with other baselines in case 1.

Fig. 16. Ablation study in casing assembly.

transformer without any spatial bias (None) was also evaluated. As
shown in Fig. 16, the absence of spatial bias led to a notable perfor-
mance decline, with accuracy dropping to 90.6% and a higher standard
deviation (STD) of 0.97. The best results were achieved when 𝛿 was
applied to both branches, reaching an accuracy of 93.69% and an F1-
score of 93.5. Adding 𝛿 exclusively to one branch resulted in lower
accuracies of 92.06% and 91.67%, respectively. The ablation study
indicated that implementing spatially embedded information in both
branches is essential.

Further analysis of the effectiveness of SETrans is presented in
Fig. 17, where the extracted point cloud features are visualized using
t-distributed stochastic neighbor embedding (t-SNE). This visualization
demonstrates that SETrans more distinctly separates the points rep-
resenting different tiers compared to the other baselines, reflecting
stronger recognition capabilities. This improvement is attributed to the
strategic integration of spatially embedded bias and the global infor-
mation processing capabilities of the transformer block. These findings
collectively affirm the advanced performance of SETrans in handling
complex spatial data, making it a potent tool for tasks requiring precise
geometric predictions.

6.2. Case 2: Engine rotor assembly with noncontact sampling

In Case 2, a high-precision point cloud dataset is constructed based
on the engine rotor assembly situation, employing a different sampling
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Fig. 17. T-SNE for case 1.
method to demonstrate the generalization capabilities of the proposed
SETrans model. The OGP is used as a noncontact sampling device to
gather the point clouds.

6.2.1. Data description
Point clouds are gathered by an OGP optical scanner with

± (1.2 + 𝐿∕250) μm measurement precision, as shown in Fig. 18. Eigh-
teen aero-engine simulated rotor parts are sampled and used to con-
struct surface assembly point clouds. The CMM and OGP employ
different sampling densities, capturing 180 points per surface and 936
points per surface, respectively. Additionally, the casing and rotor are
constructed from different materials, specifically steel for the casing
and aluminum for the rotor. This variation in sample data distribution
further demonstrates that SETrans can be deployed in various assembly
situations. The sampled points are processed using the GDE modeling
technique outlined in Section 4 to model the relationship between
assembled pairs and their corresponding coaxiality. The labeling ap-
proach remains consistent with the first case study. The entire dataset
comprises 3600 examples, with 80% (2880 examples) designated for
training and the remaining 20% (720) reserved for testing. Each class
is evenly represented with 300 samples. Similar model designs and
hyperparameters from the first case study are also applied in the
second case to validate the robustness and adaptability of SETrans.
Visualizations of the engine plane assembly situation across 12 classes
are shown in Fig. 19.

6.2.2. Experiment results
Similar to the engine sleeve assembly experiments in case 1, the

engine rotor assembly is evaluated against seven other baseline models
using four criteria. The results indicate that SETrans achieves the high-
est performance, with an accuracy of 94.31%, which is 2.64 percentage
points higher than the second-best model, PCT (91.67%). In terms of
precision and F1 score, SETrans surpasses all other models, achieving
93.17% in precision and 94.25% in F- score, with gains over the next
best model of 1.23% and 2.9%, respectively. Compared to case 1, the
SETrans has a better training effect improvement compared to the
second position in case 2. The accuracy improvement in case 2 is
2.64%, 0.56% higher than the improvement in case 1. The improve-
ment in the F1 score is most significant, with a 1.25% points gain
(2.9% compared to 1.65%). The experiment demonstrates that SETrans
is capable of adapting to diverse assembly contexts and across different
domains. The improved performance observed in case 2 underscores
the effectiveness of the spatially embedded design of the model. This
design enables SETrans to more effectively handle point clouds that
are sparse and unevenly distributed, showcasing its robustness and
versatility in processing complex spatial data (see Table 4).
11 
Fig. 18. OGP noncontact sampling.

Table 4
Test result.

Model Acc Recall Precision F1

PointNet 0.8569 0.8634 0.8618 0.8599
PointNet++ 0.8833 0.8796 0.8851 0.8742
DGCNN 0.8917 0.8871 0.8994 0.8768
PointNext 0.8986 0.8867 0.8932 0.9001
PT V1 0.9056 0.9026 0.9194 0.9010
PT V2 0.9111 0.9077 0.9003 0.9026
PCT 0.9167 0.9125 0.9086 0.9135
This paper 0.9431 0.9382 0.9317 0.9425

The experimental findings from case 2 are depicted in Fig. 20,
where the confusion matrix illustrates that all classes achieve a pre-
diction accuracy exceeding 91%, with the lowest at 91.67% and the
highest at 98.33%. This data indicates that SETrans has improved
by one percentage point over case 1, suggesting that the transformer
is more effective with sparsely distributed point clouds. The chord
diagram exhibits trends similar to those observed in case 1, with no
misjudgments between substandard and premium grades (as shown
in Fig. 21), thus underscoring the reliability of the proposed system
in aero-engine assembly scenarios. If misjudgments within the same
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Fig. 19. Visualization of rotor samples in different tiers.
Fig. 20. Confusion matrix visualization for case 2.

grade are considered accurate, SETrans shows an enhancement of 2.4
percentage points, increasing from 94.3% to 96.7%.

Fig. 22 provides a detailed view of the AP curves, highlighting
SETrans’ superior performance in engine rotor assembly scenarios. The
SETrans AP curve, positioned closest to the top right corner of the
recall/precision coordinate system, achieves top performance with a
95.2 AP score. Among other models, PointNext leads the MLP-based
category with an 88.7 AP score, and PCT stands out among transformer-
based baselines with a 92.9 AP score. PT V1, although the least effective
among transformer-based networks, still surpasses the best MLP-based
score by 2.7 points (91.4 compared to 88.7), demonstrating that trans-
formers aggregate global information more effectively and better suit
the sparse engine plane point clouds.

Similar to the experiment design in case 1, the influence of spatial
bias is also tested in the rotor assembly context, as shown in Fig. 23.
The addition of bias to different transformer feature branches reveals
that models without bias adjustment perform the worst, achieving
90.36% accuracy and a 90.06% F1-score. This suggests that spatial
information significantly influences transformer training in coaxiality
prediction. Among the configurations, attention branch bias adjustment
12 
Fig. 21. Chord diagram based on rotor assembly.

Fig. 22. AP comparison with other baselines in case 2.
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Fig. 23. Ablation study in rotor assembly.

outperforms feature transformation by 0.81% in accuracy (92.64% vs.
91.83%), indicating greater sensitivity to spatial bias. Both branch
bias adjustment achieves the highest performance with 94.33% accu-
racy and a 0.116 standard deviation, confirming the efficiency and
robustness of the proposed design.

The t-SNE visualization in Fig. 24 showcases the distinct separation
of point features by SETrans, mirroring trends observed in case 1. Only
minimal feature fusion occurs between T4 and T5 classes, aligning
with the confusion matrix observations. This visualization further con-
firms the effectiveness and adaptability of SETrans across diverse data
distributions.

6.3. Ablation study for SETrans module design

To illustrate the effectiveness of the proposed SETrans design, the
nfluence of embedded bias, window partition sampling, and Value
eature grouping were analyzed. The ablation study was implemented,
ith results presented in Table 5. The baseline results of the vanilla

transformer are labeled as ‘‘basic’’; results with window partition sam-
pling are labeled as ‘‘window’’, and those with Value feature grouping
are labeled as ‘‘group’’. Specifically, three scenarios of embedded bias

ere discussed: embedding the angle (labeled as ‘‘ang’’), embedding the
distance (labeled as ‘‘dis’’), and incorporating both (labeled as ‘‘ang +
dis’’). The results show that compared to the baseline (‘‘basic’’), window
partition sampling and Value feature grouping achieved accuracy im-
provements of 3.19% and 1.38% in Case 1, and 2.8% and 2.52% in Case
2, respectively. Both angle and distance embeddings as spatial biases
improved test accuracy in different cases. The combined design of angle
and distance biases performed the best, achieving 92.09% accuracy in
Case 1 and 92.74% in Case 2, demonstrating the module architecture’s
effectiveness. SETrans, integrating embedded bias, window partition
sampling, and Value feature grouping, showed the best performance
with gains of 5.19% points over the vanilla transformer in Case 1 and
5.3% points in Case 2. The ablation study confirms that all three modu-
lar designs of SETrans enhance testing performance and are applicable
across various industrial scenarios.

6.4. Discussion

In the conducted experiments, SETrans was evaluated using point
clouds derived from simulated aero-engine parts. The high-precision
oint cloud datasets are established utilizing the virtual measurement
ethod. The SETrans was compared against seven other models from
LP-based, GNN-based, and transformer-based categories, ultimately
13 
Table 5
Ablation study of modular designs of SETrans.

Case 1 casing Case 2 rotor

Acc F1 Acc F1

Basic 0.8846 0.8802 0.8901 0.8876
Ang 0.8913 0.8957 0.9019 0.0925
Dis 0.9073 0.8992 0.9115 0.9092
Ang + dis 0.9209 0.9231 0.9274 0.9253
Window 0.9165 0.9071 0.9181 0.9224
Group 0.8984 0.9014 0.9153 0.9187
SETrans 0.9365 0.9348 0.9431 0.9425

achieving the highest performance metrics. The proposed SETrans also
an be extended to other tolerances, such as parallelism. To under-

score the generalizability of SETrans, two distinct datasets representing
ifferent assembly scenarios, the casing assembly and the rotor assem-
ly, were utilized. These datasets employed varied sampling methods:
ontact CMM and noncontact OGP, ensuring a broad representation
f domain diversity. SETrans achieved top accuracies of 93.65% and
4.31% across these datasets. Compared to the casing, the point cloud
istribution of the rotor is more comprehensive due to the absence of
ollow parts. This structural feature enables the transformer’s global
eature extraction functionality to be fully utilized, leading to better
raining performance on the rotor dataset with a smaller amount of
ata. The method’s end-to-end prediction capability, which requires no
dditional modeling or parameter tuning, enhances its universality and

offers significant labor cost savings.
To further evaluate the generalizability of SETrans quantitatively,

the data distribution was enriched by constructing two additional
datasets: casings sampled by OGP and rotors sampled by CMM. The
ample and point numbers in these two datasets are similar to the
etting in case 1 and case 2. Together with the two datasets from
ase 1 and case 2, there are now a total of four datasets. The pro-
osed method was tested on these four datasets and evaluated using
he area under the receiver operating characteristic curve (AUC) as
he metric. The experimental results, shown in Fig. 25, indicate that
ETrans achieved the highest AUC, with scores of 0.9832, respectively.
t outperformed the second-best model, PCT, by 0.022 scores. Addi-
ionally, SETrans exhibited the most minor standard deviation, with
.00856, respectively. These results demonstrate that SETrans performs
ptimally across different input data domains and offers the best predic-
ion stability. The experiments quantitatively confirm that SETrans has
uperior generalization capabilities compared to other deep learning
aselines.

The SETrans is specifically designed for point cloud inputs and
chieves top performance across various data domains. It not only
xcels in assembly tasks but also shows potential for extension to other
eneric tasks that require point cloud input. In the future, efforts will

focus on enhancing the model to reduce the volume of training data
required and lower overall training costs. Currently, the model focuses
on the assembly of only two key components of actual aero-engines. Fu-
ture research could explore the effects of multiple components assembly
scenarios and their impact on coaxiality error. This expansion could
potentially enhance the model’s applicability and accuracy in complex
assembly tasks.

7. Conclusions

This paper introduces an aero-engine coaxiality prediction method
that combines the virtual measurement with the SETrans model. This
method is designed to provide high precision end-to-end prediction
f aero-engine coaxiality, a parameter traditionally unmeasurable di-

rectly on production lines. By employing virtual measurement, this
method reconstructs the complete GDE at the micron scale and estab-
lishes assembly datasets for mass production. Additionally, SETrans, a
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Fig. 24. T-SNE for case 2.
Fig. 25. AUC evaluation with different data domains.

transformer-based deep learning backbone for point clouds, streamlines
the process by eliminating the need to construct specific aero-engine
models for each target and removes the requirement for parameter
tuning in each virtual measurement scenario. This end-to-end deep
learning-based approach enhances the efficiency of coaxiality predic-
tion and significantly reduces labor costs in the modeling process. The
main contributions of this work are summarized as follows:

(1) This work represents the first attempt to apply the transformer
mechanism, particularly its self-attention operator, to the field of aero-
engine coaxiality prediction with complex point cloud input. The ap-
proach is naturally suited to handle invariant and disorderly input
elements, thereby ensuring high prediction accuracy.

(2) The virtual measurement method combines real part measure-
ments with virtual coaxiality calculations to align discrete point clouds
with the assembly coaxiality of aero-engine components. Based on
micron-scale point cloud measurements of surfaces, the GDE of aero-
engine parts is reconstructed using the NURBS method, enabling the
calculation of assembled coaxiality. Additionally, GDE point clouds are
augmented to enhance coaxiality prediction in mass production and to
establish an assembly dataset.

(3) A novel point cloud deep learning backbone, SETrans, is in-
troduced for effective spatial information aggregation. Enhancements
such as embedding the distance and angle of neighboring points within
the transformer blocks and designing spatially embedded biases are
14 
pivotal. These tailored adjustments for point cloud spatial relationships
facilitate improved performance even with limited input data.

(4) To mitigate the computational redundancy typically associated
with complex transformer architectures, a group strategy is integrated
into the SETrans block. Additionally, a spatial window partition method
is proposed to prevent missing samples, enabling better aggregation of
neighboring point information and reducing computation costs from
repeated sampling.

(5) SETrans is tested on an aero-engine point clouds dataset with an
error level of one μ m in sampling precision. The experiments demon-
strates that SETrans could achieve 0.01 mm precision in coaxiality
prediction and outperform other point cloud deep learning baselines.
To confirm its generalization capabilities, SETrans is evaluated us-
ing two datasets with different aero-engine assembly scenarios and
sampling devices, achieving 93.61% and 94.21% prediction accuracy,
respectively. These results indicate its adaptability to diverse data
domains and potential for deployment in various industrial scenarios.

The proposed method achieves the prediction of aero-engine coax-
iality for different assembly components that cannot be directly mea-
sured on the production line. The virtual measurement method aligns
the aero-engine coaxiality with point clouds and establishes an assem-
bly dataset. SETrans addresses the challenge of independent modeling
for each coaxiality prediction case in aero-engine assembly, facilitat-
ing end-to-end coaxiality prediction directly from input point clouds
without the need for part-specific modeling. The superior performance
in coaxiality prediction tasks, as compared to other point cloud deep
learning baselines, underscores the effectiveness of the spatial embed-
ding design. The robust performance across different datasets further
confirms the generalization and robustness of SETrans, highlighting its
potential for widespread industrial application.
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