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A B S T R A C T

The reliability of bolt connections significantly impacts the operational state and lifespan of industrial
equipment. Vision-based noncontact methods exhibit high efficiency in bolt loosening detection. However,
limited image features hinder measurement accuracy. To improve bolt loosening detection performance,
this paper proposes a novel deep learning backbone, the high-resolution cross-scale transformer, to extract
high precision keypoints for bolt three-dimensional model construction. Simultaneously, a monocular vision
measurement model is established to get the bolt exposed length and evaluate the connection loosening state.
The proposed backbone hybridizes the advantages of high-resolution architecture and transformer, realizing
global information aggregation and fine-grained image details. A simplified module, dual-scale multi-head
self-attention, is designed to reduce the computational redundancy caused by the implementation of high-
resolution multi-branch architecture. In the experiment section, the high-resolution cross-scale transformer
outperforms other keypoint detection baselines, achieving the top one performance with 91.6 average precision
and 84.9 average recall. The monocular vision measurement model realizes a 0.053 mm error with a 0.028 mm
standard deviation, satisfying the industrial implementation requirement. Additionally, the model is tested on
different industrial situations and an additional outside dataset, indicating the model’s robustness and actual
environment adaptability.
1. Introduction

Bolted joints constitute an integral component in various industries,
including civil, mechanical, and aerospace engineering, owing to their
cost-effectiveness and widespread applicability. However, the harsh
operational conditions characterized by excessive load, residual stress,
chemical corrosion, and unacceptable assembly (Wang and Song, 2019;
Hosseinpour et al., 2023; Mushtaq et al., 2023) often contribute to the
occurrence of loosening connections, resulting in engineering accidents
and casualties. Thus, it is essential to monitor the health statement
of the bolt connection statement to prevent industrial mishaps and
elongate the equipment’s lifetime.

Currently, there are two categories of bolt connection monitor
strategies: contact method and noncontact method. The contact method
involves attached sensors, such as ultrasonic sensors (Wang, 2023;
Zhang et al., 2019; Hei et al., 2020; Wang et al., 2020a), strain
gauges (Ren et al., 2018; Wang et al., 2019b; Duan et al., 2019), and
fiber Bragg grating sensors (Miao et al., 2020; Wang et al., 2020c), to
monitor connection state. In the measurement process, an input signal
produced by the signal generator traverses the bolt connection structure
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and is captured by attached sensors. Analyzing signal variations enables
the computation of the blot connection’s preload, offering valuable
insights into its tightness condition. However, the attachment of the
sensors will impact the structure and thread of target bolt connections.
Significantly, the implementation of strain gauges sensors necessitates
drilling holes in the bolt, compromising the connection’s integrity
and shortening the equipment’s lifespan. Additionally, the assembly of
sensors and their power supply escalate labor costs and the workspace
utilization. Furthermore, the sensors are highly susceptible to envi-
ronmental factors like temperature, humidity, and device vibrations,
impacting their reliability.

The noncontact method uses image acquisition devices, such as
digital cameras, to get bolt connection figures, which are analyzed with
computer vision methods to assess the fasten statement (Wei et al.,
2023). Unlike the contact method, the noncontact method avoids at-
taching or inserting extra components into the bolt connection, guaran-
teeing the bolt working statement and equipment life. Moreover, image
acquisition devices are less susceptible to temperature and humidity
compared to electrical or acoustic sensors. Since the bolt loosening pro-
cess occurs gradually in operations, vision sensors are not required to be
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on all the time, reducing the interference of temporary sensor malfunc-
tions. Mazzeo et al. (2004) first introduced an automatic visual system
to detect bolt connection defects in railways. They trained a neural to
extract the bolt locations and applied wavelet transform and principal
component analysis to patterns. The trained classifier can detect the
absence or presence of the bolt. This work realized the bolt connection
monitor with quantity detected objects, but it can only determine if the
bolt is missing instead of assessing for looseness in joints. Feng et al.
(2013) broadened the class numbers of losing bolt images, setting three
ranks for the fasteners with illumination variation. This expanded the
binary classification task into a multiclass classification problem. Ali
et al. (2021) deployed modified Faster R-CNN with the unmanned
aerial vehicle system, and Zhao et al. (2022) added YOLO-V3 to robotic
vision. Both two expanded the application scenarios of bolt looseness
detection and reduced computational cost. However, the level setting
is based on the subjective experience of the engineers, implying that
the classification outcomes are merely qualitative analyses and lack
precision. To tackle the previous issue, Cha et al. (2016) combined
Hough transform with trained support vector machines to realize the
evaluation between bolt loosening states rand rotation angles. Based on
this idea, Ramana et al. (2019) introduced the Viola–Jones algorithm
to reinforce feature extraction results and realize high performances
on smartphone images. Moreover, Wang et al. (2019a) first introduced
a semi-supervised learning strategy for angle calculation, and Zhao
et al. (2019) configured the neural network on the smartphone. Semi-
supervised learning reduced data collection and labeling costs (Jiang
et al., 2022), increasing the potential for industrial application. Though
the rotation angle calculation can quantitatively evaluate the loosening
states of bolt connection, the detection needs to compare the current
angle and the initial angle at installation, which is difficult to obtain in
actual industrial scenarios. To realize quantitative detection, Gong et al.
(2022) detected two types of bolt keypoints and calculated the exposed
length of bolts with smartphone images. This method extracts the bolt
image keypoint feature and quantitatively evaluates the bolt loosening
states. However, they directly adopted the Cascaded Pyramid Network
(CPN) (Chen et al., 2018b) without customizing the deep learning
network. Meanwhile, the measurement model is only applicable to
images with the same length and width, which is unrepresentative in
industry settings. These limitations resulted in reduced accuracy and
limited generalization. Based on previous work, this paper proposed an
innovative monocular vision measurement model with high precision
and unrestricted input image size. Simultaneously, this work discusses
the keypoint detection in-depth and presents a new backbone for better
feature extraction performance.

Deep learning has achieved great success in the field of structural
health monitoring (Cha et al., 2017, 2018). However, methods for
extracting feature points on bolt threads are still needed. Keypoint
detection, a downstream task of deep learning, is active in the human
pose detection area with its ability to extract local features. With
the locating of human anatomical keypoints, such as head, wrist, and
elbow, the 2D human pose is constructed. Compared to traditional
deep learning networks, the keypoints backbones focus on aggregating
inter-level features (Cai et al., 2020) to extract spatial and semantic
information. For example, CPN used a head network to fuse differ-
ent spatial level features, and Feature Pyramid Networks (Lin et al.,
2017a) extended the receptive field from 1/32 to 1/4 with a top-
down pathway. Residual Steps Network (RSN) enriched information
interaction in the intra-level feature map and realized state-of-the-
art (SOTA) in the COCO dataset (Lin et al., 2014). HRnet (Wang
et al., 2020b) added semantic information to spatial information in
low-resolution sub-networks, becoming a paradigmatic architecture for
keypoint detection tasks. However, the performance of these networks
is limited by finite receptive fields and strong inductive bias with
cascaded convolution kernels (Gu et al., 2022). Beyond the traditional
convolution, vision transformer (ViT) (Dosovitskiy et al., 2010) boosted
2

the prediction accuracy in the computer vision downstream tasks,
including semantic segmentation (Lewis et al., 2023; Zheng et al.,
2021), object detection (Jamil and Roy, 2023; Ma et al., 2023), and
video understanding (Bertasius et al., 2021; Zhang et al., 2021). The
attention mechanism has also demonstrated its superiority and suc-
cess in industrial applications (Choi and Cha, 2019; Kang and Cha,
2022; Ali and Cha, 2022; Rosso et al., 2023). In this work, we hy-
bridize the advantages of HRnet and ViT to propose a new backbone,
high-resolution cross-scale transformer (HRCSTrans). The HRCSTrans
achieves intense expressivity with dynamic aggregation based on the
self-attention mechanism. It also enhances fine-grained image details
with a cross-resolution multi-branch architecture. To prevent the com-
putational explosion caused by transformer and multi-branch fusion,
a simplified self-attention module, dual-scale multi-head self-attention,
is designed to replace vanilla multi-head self-attention in transformer
blocks. The HRCSTrans achieve top performance on the bolt connection
image dataset with 91.6 average precision and 84.9 average recall. It
boasts a 4.1 average precision gain compared to the keypoint detection
SOTA method RSN and 2.4 points gain compared to the modification
baseline HRNet. The HRCSTrans effectively extracts keypoints and
ensures high-precision measurement of bolt loosening states.

In summary, noncontact bolt loosening detection face two main
challenges. First, the evaluation of bolt loosening states is based on
the range of exposed length instead of a precise value. Second, previ-
ous noncontact bolt loosening methods focused on extracting the bolt
image features instead of three-dimensional reconstruction. Although
the multi-view vision is useful in high-precision three-dimensional
reconstruction, it is unsuitable for bolt loosening detection due to
space requirements and is limited by the increased cost of multiple
camera matching. This paper addresses these challenges by proposing a
new keypoint detection backbone, HRCSTrans, to extract high-precision
keypoints with conventional industrial camera images, and a monocu-
lar vision model to calculate the exposed length in the 3D real world
with seven 2D keypoints. The flowchart of the proposed system is
depicted in Fig. 1. Firstly, the image acquisition platform is constructed
and collects bolts images. The images are processed to extract the
region of interest (ROI), and the camera parameters are calibrated.
Secondly, the ROI is fed to the HRCSTrans, and seven keypoints are
obtained with the heatmap. Thirdly, the camera calibration param-
eters are transported to the monocular vision measurement model,
establishing the relationship between different coordinates. With the
2D keypoints, 3D models of the bolt’s upper and lower surfaces are
constructed. Finally, the spatial distance between these two surfaces is
determined, enabling the calculation of the bolt’s exposed length for a
quantitative detection of the loosening state.

The rest of this paper is organized as follows: Section 2 introduces
the total architecture of the HRCSTrans and the sub-module of this
new backbone. Section 3 describes the monocular vision measurement
model based on seven keypoints. Section 4 compares the proposed
method with other deep learning baselines and tests the measure-
ment accuracy in different industrial situations. Section 5 draws the
conclusions.

2. High-resolution cross-scale transformer model

To measure the bolt exposed length and evaluate the connection
loosening state, the geometric feature points of bolt 2D images need
to be extracted. The parallel arc edge of the thread presents a sig-
nificant obstacle, impeding the precise identification of the bolt tail
end’s geometric characteristics with traditional edge detectors, such as
Canny and Sobel. This section presents a novel keypoint detection deep
learning backbone, enabling the extraction of seven bolts’ keypoints
essential for exposed length calculation. To achieve heightened preci-
sion keypoint extraction performance, we integrated HRNet, a SOTA
method, with the transformer mechanism, developing a new backbone
termed HRCSTrans. The HRCSTrans represents the pioneering applica-
tion of transformer models in the domain of bolt keypoint detection

and achieves top performance compared to other baselines.
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Fig. 1. The vision-based bolt loosening detection method architecture.
2.1. HRCSTrans overview

The overall architecture of HRCSTrans is depicted in Fig. 2. The
proposed model consists of a stem head and four-stage feature extrac-
tors. The beginning stem is designed to decrease the resolution to 1∕4
and reduce the spatial dimension. It contains two stride-2 convolution
blocks and realizes downsampling two times, avoiding the explosion
in the memory footprint when processing high-resolution images with
transformer blocks. The input image is resized to 𝐻

4 ×𝑊
4 ×16 and fed to a

Batch Norm and ReLU combination to improve convergence speed. Af-
ter the convolutional stem, the HRCSTrans deploys feature split in four
stages, gradually adding high-to-low resolution streams one by one.
The highest resolution feature map is transported in the transformer
blocks stream, and resolution streams of the same size are connected in
parallel. Different from HRNet, we proposed a new transformer block,
cross-scale transformer (CST), to replace the convolution kernel for
better intra-level (Cai et al., 2020) information extraction. Before CST
blocks in each stream, a patch embedding head is attached to tune
the channel size. Due to the multiple branches of HRNet architecture,
the number of embedding heads is about three times that of the
traditional ViT structure (Dosovitskiy et al., 2010; Liu et al., 2021).
To save computational costs, the depth-wise convolution (DWConv) is
deployed to replace the convolution block in patch embedding (Chen
et al., 2018a). And the point-wise convolution (PWConv) is used to
match channels and reinforce patch information interaction for the
same reason (Yang et al., 2019). After a layer Norm, the feature map
is fed to the CST block to realize intra-level information interaction
and keypoint feature extractions. To balance the information processing
efficiency and keypoint detection accuracy, we reduce the number of
CST blocks and cancel the feature fusion in different resolutions at
the first two stages. Stage three and four process fine grained feature
maps, critical in keypoint detection tasks. Hence, in these stages, the
transformer blocks are repeated, and different features are fused.
3

After the transformer blocks, a multi-resolution fusion layer is used
to fortify the feature map interaction of different resolutions. To guar-
antee the low-resolution feature maps maintain local position details,
all the high-resolution and low-resolution features are fused follow-
ing the design of HRNet. Unlike the HRNet, HRCSTrans retains the
lightweight design in the multi-resolutions fusion layer. The combina-
tion of DWConv and PWConv replaces the progressive convolution in
the downsampling process. The DWConv shrinks the spatial dimension
while the PWConv expands the channel to match the low-resolution
feature size. Each convolution is followed by a normalization block
to accelerate the learning convergence speed and avoid the problem
of vanishing gradients. In the upsampling process, a PWConv is first
employed to half the channel length, and a norm layer is followed
to normalize the feature. The normalized feature is fed to the nearest
upsampling model to upscale the spatial dimension. For the same
resolution features, they are directly passed through the forward skip
and added with the features from the downsampling and upsampling
path. Finally, the fused features are fed to an activation function and
transported to the next patch embedding. Inspired by the convolution
and transformer hybrid diagram (Liu et al., 2022), the Layer Norm and
GELU activation are chosen instead of the universal Batch Norm and
ReLU.

2.2. Cross-scale transformer block and dual-scale multi-head self-attention

HRNet constructs a rich receptive field pyramid and has succeeded
in the keypoint detection field through information fusion at different
resolutions. Nevertheless, HRNet focuses on the information transaction
on different size feature maps and ignores the feature extraction in the
same resolution (Cai et al., 2020). ViT, famous for its self-attention
mechanisms, is good at establishing information interaction in the
intra-level feature. To modify the performance of the current backbone
in the keypoint detection task, we combine the advantages of HRNet
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Fig. 2. The overview of high-resolution cross-scale transformer.
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nd ViT to build our HRCSTrans. Considering the multi-branch struc-
ure of HRNet and the high computational cost of self-attention, directly
sing transformer blocks to replace the convolutions in HRNet will
ause parameter explosion. To hybridize the advantages of HRNet and
iT and avoid parameter explosion, we modified the transformer block
nd proposed a new module, CST, as shown in Fig. 2. The input feature
s fed to a Layer Norm and transported to the dual-scale multi-head self-
ttention (DS-MHSA) module. After skip link connection, the feature
s fed to a feedforward network to reinforce channel wise information
nteraction.

The DS-MHSA module is shown in Fig. 3. Inspired by the CSWin
Dong et al., 2022) and HRVit (Gu et al., 2022), the input feature,
enoted as 𝑥 ∈ R𝐻×𝑊 ×𝐶 , is split to two sides in the channel wise
or reduce computational parameters. After splitting, the feature map
s transported to a dual branch architecture to pass through the self-
ttention mechanism in different scales. Different from classic trans-
ormer block, the patch embedding in our cross-scale transformer uses
rectangle window instead of a square. The height wise feature 𝑥ℎ ∈
𝐻×𝑊 ×𝐶∕2 and same size width wise feature 𝑥𝑤 are transported differ-
nt branch for different scale window patching. Compared to vanilla
ision transformer, this design interacts feature in the same channel
ith different window scale, and it also avoids the double computation

ost caused by window shuffle and repeated attention block (Dong
t al., 2022). In the upper branch, the input feature 𝑥ℎ is patched
n height wise and presented as 𝑥ℎ =

[

𝑥1ℎ, 𝑥
2
ℎ,… , 𝑥𝑖ℎ,… , 𝑥𝐼ℎ

]

, 𝑥𝑖 ∈
𝐻𝑤𝑖𝑛×𝑊 ×𝐶∕2. The 𝑥𝑖ℎ means the 𝑖𝑡ℎ patch of input feature and the 𝐻𝑤𝑖𝑛

s the window size in the height scale. The total numbers of patch I
quals to the height size divided by height scale window size, defined
s 𝐼 = 𝐻∕𝐻𝑤𝑖𝑛. After patching, the feature map is fed to the height
cale multi-head self-attention (HS-MHSA) block. At the beginning, the
𝑖
ℎ is passed to a QKV three branches structure, defined as Eq. (1):

𝑖
𝑗 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥

(

𝑊 𝑄𝑥𝑖
(

𝑊 𝐾
𝑗 𝑥𝑖

)𝑇
∕
√

𝐶𝑗
)

𝑊 𝑉
𝑗 𝑥𝑖 (1)
4

𝑗 ℎ ℎ ℎ
here 𝑦𝑖𝑗 is 𝑗𝑡ℎ head output of 𝑥𝑖ℎ in the QKV branches and 𝐶𝑗 is the
hannel size of each head feature. 𝑊 𝑄

𝑗 ,𝑊
𝐾

𝑗
,𝑊 𝑉

𝑗 corresponds to the
arameter metrics of Query, Key and Values, and the metric size equals
o R𝐶𝑗×𝐶∕2. In this work, the parameters of 𝑊 𝐾

𝑗 and 𝑊 𝑉
𝑗 are shared

o save computational cost and release reduction caused by multi-
esolution architecture. The Key metric is transported and multiples
ith the Query metric. The expanded feature is divided by the square

oot value of channel length and fed to the softmax function. Finally,
he uniformization value multiples with the shared value metric and
he output 𝑦𝑖𝑗 is obtained. Unlike vanilla self-attention blocks, the
ubsidiary skip link is added to the shared value branch to reinforce
ocal feature aggregation. The function of the subsidiary skip link is
hown in Eq. (2):
𝑖
𝑗 = 𝑦𝑖𝑗 +𝐷𝑊𝐶𝑜𝑛𝑣

(

𝛿
(

𝑊 𝐾
𝑗 𝑥𝑖ℎ

))

(2)

The 𝑊 𝐾
𝑗 𝑥𝑖ℎ is the shared value metric with input and it is passed

hrough an H-swish activation function, denoted as 𝛿. A DWConv
s deployed to enrich local information interactions ignored by the
elf-attention mechanism. Then, the link output is added to the QKV
ranches’ output 𝑦𝑖𝑗 and get the 𝑗𝑡ℎ head output 𝑧𝑖𝑗 . Before the window
oncat, a feature fusion module f is exploited to mix different head
eatures, and it is defined as:
(

𝑧𝑖
)

= 𝐿𝑁
(

𝛿
(

𝐷𝑊𝐶𝑜𝑛𝑣
[

𝑧𝑖1, 𝑧
𝑖
2,… , 𝑧𝑖𝑗 ,… , 𝑧𝑖𝐽

]))

(3)

The 𝑧𝑖 presents the feature fusion results corresponding to the 𝑥𝑖ℎ
input. The J is the total head number and equals to 𝐶∕

(

2𝐶𝑗). All
the head outputs 𝑧𝑖𝑗 are concatenated together and passed through a
DWConv to inject inductive bias to facilitate training. An H-swish ac-
tivation function and layer norm are followed to improve convergence
speed. Simultaneous Eqs. (1)–(3) and concatenating all the window

features, the output of HS-MHSA with total height scale patching input
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Fig. 3. Architecture of the dual-scale multi-head self-attention module.
𝑥ℎ is calculated. The width scale multi-head self-attention (WS-MHSA)
composition is similar to the HS-MHSA, including QKV branches, a
subsidiary skip link, and a feature fusion layer. So, the details of WS-
MHSA are omitted in Fig. 3. Different with HS-MHSA, the patching
splitting of WS-MHSA is along the width scale instead of the height
scale. It guarantees that the feature in the same channel can interact
with the feature in different patches, and the various global information
will effectively improve the keypoint extraction effect. In the end, the
output of HS-MHSA and WS-MHSA are concatenated in channel wise
and it is the final output of DS-MHSA block.

2.3. Multi-scale feedforward

In the previous section, the DS-MHSA block realizes a cross-scale
global information aggregation with limited parameters. Meanwhile,
the subsidiary skip link guarantees the preservation of detailed infor-
mation. However, the two split features are spliced together directly
after passing through the dual attention architecture. It causes a lack
of information fusion between these two parts, leading to severe infor-
mation isolation. To solve this, in the CST module (Fig. 2), a multi-scale
feedforward (MSF) block is proposed to integrate the feature map
processed by the DS-MHSA block. The details of MSF are shown in
Fig. 4. The input feature R𝐻×𝑊 ×𝐶 is expanded k times in the channel
wise, and this is the first fusion of the segmented feature transmit-
ted by the DS-MHSA block’s dual branch architecture. Followed by
the PWConv expansion, the feature map is split into three parts and
transported to three branches. To compensate for the lack of local
information interaction caused by the transformer window patching,
the MSF block deploys three different scales DWConvs. Different from
the design of Segformer (Xie et al., 2021), the expansion ratio k is
controlled as three to respond to the branches number, and the 3 × 3,
5 × 5 and 7 × 7 kernel sizes are implemented on different branches
to enrich perspective fields. After different scales convolution, the
feature map is hybrid by the matrix concat. Passing through a GELU
activation function, the feature map gets the second time channel wise
5

Fig. 4. Architecture of the multi-scale feedforward block.

integration with a PWConv, and the size is reverted to R𝐻×𝑊 ×𝐶 . The
MSF block integrates the channel wise features divided by the HS-
MHSA and WS-MHSA. It also achieves multiple receptive expansions
using a three-branch architecture. With the aid of the MSF block, the
HRSCTrans accomplishes high precision keypoints extraction, which
positively impacts the bolt 3D construction and loosening detection.

3. Monocular vision measurement model

Employing our HRCSTrans model, the precision coordinates of
seven keypoints are derived from the 2D bolt image. Nonetheless,
the construction of a 3D bolt model, particularly in a monocular
vision system, continues to pose a significant challenge. In light of
this, we present a monocular vision measurement model for 3D bolt
reconstruction utilizing limited keypoints. Seven keypoints are used
in this model, while four keypoints are used to determine the space
coordinates of bolt’s upper surface and the other three keypoints are
used to determine the lower surface. The exposed length is calculated
by the spatial distance between these two surfaces, implemented to
evaluate the loosening state.
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Fig. 5. Keypoint 3D coordinate mapping.

3.1. The image keypoint mapping with 3D space

The camera system operates on the principle of small aperture
imaging, and the keypoint 3D coordinate mapping relationship is con-
structed as shown in Fig. 5. This mapping process involves four co-
ordinate systems, including the world coordinate system (WCS), the
camera coordinate system (CCS), the image coordinate system and the
pixel coordinate system. The WCS represents the physical location of
the object in the real world. Simultaneously, the CCS is established
with the camera’s optical center

(

𝑂
)

serving as its coordinate origin.
The image coordinate system

(

𝑂1𝑥𝑦
)

and the pixel coordinate system
correspond to the 2D image plane. The former represents the physical
scale, while the latter represents the pixel scale. The coordinate (𝑥, 𝑦)
of 𝑂1𝑥𝑦 and the coordinate (𝑢, 𝑣) is related to image size 𝑑𝑥 and 𝑑𝑦,
i.e., 𝑢 = 𝑥∕𝑑𝑥. The line 𝑂𝑂1, connecting the origin of CCS and 𝑂1𝑥𝑦,
is perpendicular to the image plane, and the length of 𝑂𝑂1 is the
focal length f. The 𝐴𝐼𝑚𝑔

(

𝑢𝐴, 𝑣𝐴
)

is the pixel coordinate of the extracted
keypoint A and 𝐴𝑅𝑒𝑎𝑙 represents the 3D position of A in the real world.
The 𝐴𝑅𝑒𝑎𝑙 has two coordinate formats: the 𝐴

𝑅𝑒𝑎𝑙
(

𝑋𝐴
 , 𝑌

𝐴
 , 𝑍𝐴


)

under
CCS and the 𝐴

𝑅𝑒𝑎𝑙

(

𝑋𝐴
 , 𝑌 𝐴

 , 𝑍𝐴


)

under WCS. To obtain the bolt 3D
model and the exposed length in the real world, the mapping relation
of 𝐴𝐼𝑚𝑔 and 𝐴

𝑅𝑒𝑎𝑙 is constructed as Eq. (4).

𝑍𝐴


⎡

⎢

⎢

⎣

𝑢𝐴

𝑣𝐴

1

⎤

⎥

⎥

⎦

= 𝑰
[

𝑹 𝑻 𝒓𝒂𝒏𝒔
0 1

]

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑋𝐴


𝑌 𝐴


𝑍𝐴


1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(4)

The matrix 𝑰 ∈ R3×4 presents the camera intrinsic parameters, and
𝑹 ∈ R3×3, 𝑻 𝒓𝒂𝒏𝒔 ∈ R1×3 present the camera extrinsic parameters. 𝑹 ∈
R3×3 is rotation transformation from WCS to CCS, and 𝑻 𝒓𝒂𝒏𝒔 ∈ R1×3

corresponds to the translation transformation. All the camera parame-
ters are calibrated by the flexible camera calibration algorithm (Zhang,
1999), and the calibration results are shown in Section 4.1, Table 1.
The details of transformation are defined as Eqs. (5)–(7).

𝑰 =
⎡

⎢

⎢

𝑓∕𝑑𝑥 0 𝑢0 0
0 𝑓∕𝑑𝑦 𝑣0 0

⎤

⎥

⎥

(5)
6

⎣ 0 0 1 0⎦
𝑹 (𝜔, 𝜃, 𝜅) =
⎡

⎢

⎢

⎣

1 0 0
0 cos𝜔 − sin𝜔
0 sin𝜔 cos𝜔

⎤

⎥

⎥

⎦

𝑹′

𝑹′ =
⎡

⎢

⎢

⎣

cos 𝜃 0 sin 𝜃
0 1 0

− sin 𝜃 0 cos 𝜃

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

cos 𝜅 − sin 𝜅 0
sin 𝜅 cos 𝜅 0
0 0 1

⎤

⎥

⎥

⎦

(6)

𝑻 𝒓𝒂𝒏𝒔 =
[

𝑡𝑥 𝑡𝑦 𝑡𝑧
]𝑇 (7)

The 𝑢0 and 𝑣0 corresponds to the distance between 𝑂0 and 𝑂1 on
u axis and v axis. 𝜔, 𝜃 and 𝜅 mean the rotation angle along 𝑋 axis,
𝑌 axis and 𝑍 axis, while 𝑡𝑥, 𝑡𝑦 and 𝑡𝑧 are the translation along these
directions. For convenience of calculations, we combine Eqs. (5)–(7)
and simplify as below:

𝑍𝐴


⎡

⎢

⎢

⎣

𝑢𝐴

𝑣𝐴

1

⎤

⎥

⎥

⎦

= 𝑴

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑋𝐴


𝑌 𝐴


𝑍𝐴


1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(8)

The matrix 𝑴∈ R𝟑×𝟒 is the combination of camera intrinsic param-
eters and extrinsic parameters. Based on Section 2, the pixel coordinate
𝐴𝐼𝑚𝑔

(

𝑢𝐴, 𝑣𝐴
)

of keypoint A is obtained, and Eq. (8) converts into
a four-quad system with four unknowns, 𝑋𝐴

 , 𝑌 𝐴
 , 𝑍𝐴

 and 𝑍𝐴
 . By

substitution, the coordinates of 𝑍𝐴
 is eliminated and Eq. (8) is rewritten

as:

⎡

⎢

⎢

⎣

𝑢𝐴𝑚31 − 𝑚11 𝑣𝐴𝑚31 − 𝑚21
𝑢𝐴𝑚31 − 𝑚11 𝑣𝐴𝑚31 − 𝑚21
𝑢𝐴𝑚33 − 𝑚13 𝑣𝐴𝑚31 − 𝑚21

⎤

⎥

⎥

⎦

𝑇 ⎡

⎢

⎢

⎢

⎢

⎣

𝑋𝐴


𝑌 𝐴


𝑍𝐴


⎤

⎥

⎥

⎥

⎥

⎦

=
[

𝑚14 − 𝑢𝐴𝑚34
𝑚24 − 𝑣𝐴𝑚34

]

(9)

The 𝑚𝑖,𝑗 , 𝑖 ∈ [1..3] , 𝑗 ∈ [1..4] means the element in 𝑖𝑡ℎ row and
𝑗𝑡ℎ column of matrix 𝑴 . Eq. (9) is a ternary system of two equations
representing the space line 𝑂𝐴𝑟𝑒𝑎𝑙 in WCS. In the same way, based
on the other six keypoints coordinate 𝐵𝐼𝑚𝑔

(

𝑢𝐵 , 𝑣𝐵
)

, 𝐶𝐼𝑚𝑔
(

𝑢𝐶 , 𝑣𝐶
)

,… ,
𝐺𝐼𝑚𝑔

(

𝑢𝐺 , 𝑣𝐺
)

, the connection line between the camera light center and
the keypoint 3D real position is calculated, defined as
𝑂𝐵𝑟𝑒𝑎𝑙 , 𝑂𝐶𝑟𝑒𝑎𝑙 ,… , 𝑂𝐺𝑟𝑒𝑎𝑙.

3.2. Spatial distance calculations

Building upon the mapping relationship between keypoint image
coordinates and 3D real positions inWCS, the calculation of the connec-
tion line function between the camera optical center and the keypoint
3D real position is performed. Although these mapping relationships
facilitate the transformation from the 2D image to 3D space, achieving
precise 3D coordinates remains elusive. To attain the bolt 3D informa-
tion, the position of the 3D keypoint in the connection line must be
affirmed. This section introduces a spatial distance calculation model,
incorporating bolt voxel information, designed to determine the actual
3D position of the keypoint coordinate and the exposed bolt’s length.

In the spatial distance calculation process, the seven keypoints
construct two surfaces, and the distance between the two surfaces
corresponds to the exposed length. For the upper face, determined
by keypoints A, B, C and D, the keypoints are located at the axis
endpoints of the 2D ellipse. In the 3D mapping space, the keypoints’
WCS coordinates quarter the circumference of the upper surface circle.
The calculation process is shown in Fig. 6. based on the bolt voxel
information. Similar to the model in Section 3.1, the point 𝑂 means
the camera’s optical center and 𝐴𝑟𝑒𝑎𝑙 ,… , 𝐷𝑟𝑒𝑎𝑙 are theWCS coordinates
of four upper surface keypoints. The 𝐻1

𝑟𝑒𝑎𝑙 is the center of the circle
𝐴𝑟𝑒𝑎𝑙𝐵𝑟𝑒𝑎𝑙𝐶𝑟𝑒𝑎𝑙. Based on the bolt voxel information, the space line and
bolt radius are related by Eq. (10).

|𝐴 𝐵 | = |𝐵 𝐶 | =
√

2𝑟 (10)

| 𝑟𝑒𝑎𝑙 𝑟𝑒𝑎𝑙| | 𝑟𝑒𝑎𝑙 𝑟𝑒𝑎𝑙|
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𝑙

Fig. 6. Surfaces 3D reconstruction.

Table 1
Calibration parameters of the camera.

Parameters Type Value

𝑓𝑥 (mm)
Intrinsic
parameters

8.49
𝑓𝑦 (mm) 8.49
𝑑𝑥 (μm) 4.65
𝑑𝑦 (μm) 4.65

𝜔 Rotation
angle

2.856
𝜃 3.056
𝜅 1.240

𝑡𝑥 Transition
distance

0.199
𝑡𝑦 −0.085
𝑡𝑧 1.984

where |

|

𝐴𝑟𝑒𝑎𝑙𝐵𝑟𝑒𝑎𝑙
|

|

is the length of the line 𝐴𝑟𝑒𝑎𝑙𝐵𝑟𝑒𝑎𝑙 and r means the
radius of the target bolt. Introduce the pixel coordinates 𝐵𝐼𝑚𝑔

(

𝑢𝐵 , 𝑣𝐵
)

and 𝐶𝐼𝑚𝑔
(

𝑢𝐶 , 𝑣𝐶
)

to Eq. (9) and the actual radius to Eq. (10), the
WCS coordinate of 𝐴𝑟𝑒𝑎𝑙, 𝐵𝑟𝑒𝑎𝑙 and 𝐶𝑟𝑒𝑎𝑙 can be calculated. In order to
improve the accuracy of the calculation result and solve the multiple-
solution problems that may occur in spatial symmetry, we use the
triangle 𝐵𝑟𝑒𝑎𝑙𝐶𝑟𝑒𝑎𝑙𝐷𝑟𝑒𝑎𝑙, 𝐴𝑟𝑒𝑎𝑙𝐶𝑟𝑒𝑎𝑙𝐷𝑟𝑒𝑎𝑙 and 𝐴𝑟𝑒𝑎𝑙𝐵𝑟𝑒𝑎𝑙𝐷𝑟𝑒𝑎𝑙 to repeat the
Eq. (10) calculation process and calculate the average of all keypoints
WCS coordinates as the final results. Based on this process, the four
keypoints 𝐴𝑟𝑒𝑎𝑙, 𝐵𝑟𝑒𝑎𝑙, 𝐶𝑟𝑒𝑎𝑙, 𝐷𝑟𝑒𝑎𝑙 and center 𝐻1

𝑟𝑒𝑎𝑙

(

𝑋𝐻1

 , 𝑌 𝐻1

 , 𝑍𝐻1



)

is
obtained. The surface 𝐴𝑟𝑒𝑎𝑙𝐵𝑟𝑒𝑎𝑙𝐶𝑟𝑒𝑎𝑙 is also calculated, defined as:
|

|

|

|

|

|

|

𝑥 −𝑋𝐴
 𝑦 − 𝑌 𝐴

 𝑧 −𝑍𝐴


𝑋𝐵
 −𝑋𝐴

 𝑌 𝐵
 − 𝑌 𝐴

 𝑍𝐵
 −𝑍𝐴


𝑋𝐶

 −𝑋𝐵
 𝑌 𝐶

 − 𝑌 𝐵
 𝑍𝐶

 −𝑍𝐵


|

|

|

|

|

|

|

= 0 (11)

For the lower surface, the keypoints cannot be positioned on the
axis of the 2D ellipse due to occlusion. So, the angle information
of the equilateral triangle cannot be used. To calculate the surface
𝐸 𝐹 𝐺 , the 3D keypoints are projected to a 2D surface, as shown
7

𝑟𝑒𝑎𝑙 𝑟𝑒𝑎𝑙 𝑟𝑒𝑎𝑙
in Fig. 6. The 𝐸𝑟𝑒𝑎𝑙, 𝐹𝑟𝑒𝑎𝑙 and 𝐺𝑟𝑒𝑎𝑙 are the lower surface keypoints in
WCS. Due to the triangle 𝐸𝑟𝑒𝑎𝑙𝐹𝑟𝑒𝑎𝑙𝐺𝑟𝑒𝑎𝑙 has a circumcircle with r radius,
the perpendicular line of the string is used to determine the center of
the circle. The point J is the intersection point of string 𝐸𝑟𝑒𝑎𝑙𝐹𝑟𝑒𝑎𝑙 and
its perpendicular bisector, while point K is the intersection point of the
string 𝐸𝑟𝑒𝑎𝑙𝐺𝑟𝑒𝑎𝑙 and its perpendicular bisector. These two perpendicular
bisectors intersect at point 𝐻2

𝑟𝑒𝑎𝑙, the center of circle 𝐸𝑟𝑒𝑎𝑙𝐹𝑟𝑒𝑎𝑙𝐺𝑟𝑒𝑎𝑙.
Additionally, line 𝐾𝐻2

𝑟𝑒𝑎𝑙 interaction line 𝐹𝑟𝑒𝑎𝑙𝐺𝑟𝑒𝑎𝑙 at point L. Different
from equilateral triangles, the included angle of triangle 𝐸𝑟𝑒𝑎𝑙𝐹𝑟𝑒𝑎𝑙𝐺𝑟𝑒𝑎𝑙
is unknown. To solve this, triangle 𝐸𝑟𝑒𝑎𝑙𝐹𝑟𝑒𝑎𝑙𝐺𝑟𝑒𝑎𝑙 is projected to plane
𝑂𝑤𝑋𝑤𝑌𝑤, to convert a 3D space problem into a 2D plane solution, as
shown in Fig. 6. The 𝐸′

(

𝑋𝐸
 , 𝑌 𝐸



)

is the projection of 𝐸𝑟𝑒𝑎𝑙 and the
coordinates of other projection points are also the same. The function
of line 𝐽 ′𝐻 ′ and 𝐾 ′𝐿′ is calculated as below:
⎧

⎪

⎨

⎪

⎩

(

𝑥 −𝑋𝐽


)(

𝑌 𝐻
 − 𝑌 𝐽



)

=
(

𝑦 − 𝑌 𝐽


)(

𝑋𝐻
 −𝑋𝐽



)

(

𝑥 −𝑋𝐽


)(

𝑌 𝐻
 − 𝑌 𝐽



)

=
(

𝑦 − 𝑌 𝐽


)(

𝑋𝐻
 −𝑋𝐽



) (12)

Based on Eq. (9), the coordination of 𝐻 ′
(

𝑋𝐻
 , 𝑌 𝐻



)

, corresponding
to the 𝑋𝑤 and 𝑌𝑤 coordination of 𝐻2

𝑟𝑒𝑎𝑙. Similar to this, the coordinate
of 𝐿′

(

𝑋𝐿
 , 𝑌 𝐿



)

is calculated by interaction line 𝐾 ′𝐻 ′ and 𝐺′𝐹 ′ as
shown below:
⎧

⎪

⎨

⎪

⎩

(

𝑥 −𝑋𝐾


)(

𝑌 𝐻
 − 𝑌 𝐾



)

=
(

𝑦 − 𝑌 𝐾


)(

𝑋𝐻
 −𝑋𝐾



)

(

𝑥 −𝑋𝐺


)(

𝑌 𝐹
 − 𝑌 𝐺



)

=
(

𝑦 − 𝑌 𝐺


)(

𝑋𝐹
 −𝑋𝐺



) (13)

To calculate the 𝑍𝑤 coordinate of 𝐻2
𝑟𝑒𝑎𝑙, the ratio between triangle

𝐾𝐿𝐿′′ and 𝐾𝐿′′𝐻2
𝑟𝑒𝑎𝑙 is used as Eq. (14):

𝑍𝐻2

 −𝑍𝐾


𝑍𝐿
 −𝑍𝐾


=

|

|

𝐾𝐻 ′′
|

|

|𝐾𝐿′′
|

=
|

|

𝐾 ′𝐻 ′
|

|

|𝐾 ′𝐿′
|

(14)

Based on Eqs. (4) and (9), the point of circle 𝐸𝑟𝑒𝑎𝑙𝐹𝑟𝑒𝑎𝑙𝐺𝑟𝑒𝑎𝑙 is pre-
sented by 2D image coordinates. The circumcircle of circle 𝐸𝑟𝑒𝑎𝑙𝐹𝑟𝑒𝑎𝑙𝐺𝑟𝑒𝑎
is used to construct the additional constraint relationship between the
WCS coordinates and the real bolt vox:
(

𝑋𝑖
 −𝑋𝐻2



)2
+
(

𝑌 𝑖
 − 𝑌 𝐻2



)2
+
(

𝑍 𝑖
 −𝑍𝐻2



)2
= 𝑟2 (15)

where 𝑖 ∈ {𝐸, 𝐹 ,𝐺} indicates the point name in the circle and r
corresponds to the bolt radius. To solve the multiple solution question,
the boundary regulation surface 𝐴𝑟𝑒𝑎𝑙𝐵𝑟𝑒𝑎𝑙𝐶𝑟𝑒𝑎𝑙𝐷𝑟𝑒𝑎𝑙 parallel to surface
𝐸𝑟𝑒𝑎𝑙𝐹𝑟𝑒𝑎𝑙𝐺𝑟𝑒𝑎𝑙. Simultaneous Eqs. (4) and (11)–(15), the keypoints WCS
coordinates are calculated. With the keypoint coordinates of the upper
surface, coordinates of point 𝐻1

𝑟𝑒𝑎𝑙 and 𝐻2
𝑟𝑒𝑎𝑙 can be obtained. Finally,

the space line length |

|

|

𝐻1
𝑟𝑒𝑎𝑙𝐻

2
𝑟𝑒𝑎𝑙

|

|

|

is calculated, corresponding to the
bolt exposed length. The loosening state of the bolt connection can be
evaluated by the exposed length.

4. Experiment

To validate the accuracy and efficacy of our method, we imple-
mented an image acquisition platform grounded in the monocular vi-
sion measurement model. A bolt image dataset is built via the platform
and tested on the HRCSTrans backbone. The details of the experiment
process are demonstrated in this section.

4.1. Image acquisition preparation

As depicted in Fig. 7, a specialized image acquisition platform
is devised to ensure image quality and ground truth accuracy. The
chosen camera is the HIKvision industrial camera MV-CA050-10GM
(2448 × 2048 camera resolution) coupled with MVL-MF0828M Len,
which is connected to a PC to store the bolt images. Illumination
is provided by the TH2-160X120SW LED light source, supported by
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Fig. 7. Image acquisition platform.

Fig. 8. Ground truth establishment.

the CCS.PD3-5024-4-PI light power supply. A mobile platform is used
to assemble the target bolt, ensuring the accuracy of measurement
ground truth. The bolts are fastened by a torque wrench with 10 Nm
torque. Following image acquisition, the mobile platform is moved to
the coordinate measuring machine (CMM) to get the exposed length,
as shown in Fig. 8. In this paper, the CMM is the Hexagon Leitz
PMM-XI12107 CMM with ± (0.5 + 𝐿∕500) μm precision, enhancing the
reliability of exposed length measurement.

Before identifying the keypoint WCS coordinates, the industrial
camera is calibrated by flexible camera calibration (Zhang, 1999),
implemented with OpenCV and Python (3.8.11). The calibration results
are shown in Table 1. The intrinsic parameters are used in Eq. (5),
while the rotation angle and transition distance constitute the extrinsic
parameters, feeding to Eqs. (5) and (6). Camera distortion elimination
is omitted in the calibration because industrial camera images can
realize high-precision bolt loosening detection. Image augmentation
and distortion elimination are needed when applying to complex data
distribution (Hong et al., 2018).
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Table 2
Training hyperparameter.

Config Value

Dataset size 600 training, 150 testing
Camera resolution 2448 × 2048
Input image size 384 × 288
Batch size 16
Epoch 1000
Drop rate 0.2
Learning rate 0.002
Optimizer Adam, betas = (0.9,0.999)
StepLR Step size = 20, gamma = 0.8
Decay rate 0.0001

4.2. Keypoint detection result

A bolt 2D image dataset, coupled with 3D ground truth, is estab-
lished based on the image acquisition platform. The M14 bolt and nut,
featuring a two-millimeter pitch and composed of brass, are employed
in this study, encompassing an exposed length range from 10 mm
to 60 mm. Keypoints are annotated by LabelMe and converted into
COCO (Lin et al., 2014) data format for the deep learning process.
The labeled dataset comprises 750 images, with 80% (600 images)
designated for training and the remaining 20% (150 images) reserved
for testing. Addressing the specific input image size requirement for
keypoint detection task, the RetinaNet (Lin et al., 2017b) is deployed
for the region of interest extraction. The extraneous background is
removed, and the input image used for keypoint detection is modified
to an aspect ratio of four to three.

After image processing and ground truth measurement, the labeled
images are fed to the HRCSTrans. The region of interest extractor and
HRCSTrans are programmed in Pytorch (1.9.0) with Python (3.8.11).
The model is trained on a workstation with a CPU of Intel Xeon
Platinum 8375C @2.90 GHz and an NVIDIA GeForce RTX 3090 GPU
with 24 GB memory using the PyCharm. In the training process, the
batch size of 16 is selected with the 384 × 288 input image size, and
the Adam is employed as the optimizer with a 0.002 learning rate and
0.9𝛽1, 0.999𝛽2. To guarantee the training speed and model convergence
accuracy, the learning rate decay is introduced in the training strategy.
The learning rate declines in 0.0001 rate and renews in every 20 epochs
with 0.8 𝛾. The training process lasts 1000 epochs with a 0.2 drop rate,
and specific values of the hyperparameters are shown in Table 2.

The training process is illustrated in Fig. 9. It is evident that the
training loss and training accuracy undergo rapid changes and maintain
the initial trend in the first 50 epochs, attributed to the significant
learning rate at the beginning of training. With the learning rate decay
training strategy, the training loss gradually stabilizes, and the training
accuracy peaks, indicating successful model convergence. Compared
to the HRnet, the HRCSTrans has a higher initial loss (0.1687 com-
pared to 0.0988) and converges more slowly in the first 50 epochs,
owing to the additional transformer blocks. After the 50th epoch, the
converge speed of HRCSTrans gradually exceeds that of HRnet. Both
models achieve stable training loss by the 900th epoch. Ultimately,
the HRCSTrans exhibits a lower final training loss (0.0002 compared
to 0.0037), underscoring the superior training performance.

To illustrate the effectiveness of our method, we compare HRC-
STrans with other SOTA keypoint backbones, including HRnet, RSN,
SimpleBase, and CPN. Additionally, we contrast our method with the
bottom-up paradigm, the OpenPose. The standard evaluation metric
employed is Object Keypoint Similarity (OKS), defined as Eq. (16).

OKS =
∑

𝑖 𝑒𝑥𝑝
(

−𝑑2𝑖 ∕2𝑠
2𝑘2𝑖

)

𝛿
(

𝑣𝑖 > 0
)

∑

𝑖 𝛿
(

𝑣𝑖 > 0
) (16)

where 𝑑𝑖 is the Euclidean distance between the prediction keypoint
image coordinates and the corresponding labeled ground truth. 𝑣𝑖
corresponds to the visibility flag of the ground truth, s is the object
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Fig. 9. Training process.

Fig. 10. AP comparison with other methods.

Table 3
Performance comparison with other baselines.

Method AP AP50 AP75 AP𝑀 AP𝐿 AR

OpenPose 71.3 79.3 68.7 66.1 69.7 68.5
G-RMI 75.2 81.6 73.9 74.3 73.0 75.4
CPN 81.5 85.7 79.0 79.2 77.5 78.9
SimpleBase 83.4 86.2 81.7 79.3 79.0 79.4
RSN 85.1 88.7 83.6 82.9 81.6 82.3
HRnet 86.8 89.3 82.5 83.5 83.1 81.7
Ours 89.2 91.6 87.1 86.1 87.8 84.9

scale, and 𝑘𝑖 is a falloff controlling constant mapping to each keypoints.
According to the COCO data format evaluation criteria (Lin et al.,
2014), the average precision (AP) based on various OKS and recall
scores are utilized to assess keypoint detection performance, as detailed
in Table 3. The AP50 denotes the AP value at OKS = 0.5, while AP75

represents the AP at OKS = 0.75. AP is the mean value of AP scores at
ten different OKS positions (OKS = 0.45 + 0.05𝜆, {𝜆 ∈ [1, 10] |𝜆 = 𝑍}).
The AP𝑀 focuses on testing medium objects, while AP𝐿 takes care
of large objects. The AR means the average recall scores at ten OKS
positions.

The prediction results of the HRCSTrans and other SOTA methods
are reported in Table 3. Our method reaches the best AP score, 89.2,
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Table 4
Ablation study.

Method AP AP50 AP75 AP𝑀 AP𝐿 AR

HR+CONV 86.1 87.9 83.1 82.8 83.3 80.9
HR+MHSA+FF 87.2 89.7 84.3 84.1 85.5 82.6
HR+MHSA+MSF 87.3 89.5 85.1 84.6 85.3 82.9
HR+DS-MHSA+FF 88.1 90.3 86.2 84.9 86.3 83.5
HR+DS-MHSA+MSF 89.2 91.6 87.1 86.1 87.8 84.9

and has 2.4 points gain than the second one, HRnet. In comparison,
the lowest performer, the OpenPose, HRCSTrans achieves 17.9 points
gain (89.2 compared to 71.3). In AR evaluation, RSN outperforms
HRnet, securing the second position, while OpenPose remains the least
effective with a score of 68.5. HRCSTrans secures the top position,
boasting a 2.6 points gain over RSN (84.9 compared to 82.3). Across
all the AP evaluation criteria, the HRCSTrans claims the first position,
exhibiting a minimum 2.3 points gain (91.6 compared to 89.3). All
the other backbones follow a similar distribution trend, except in the
AP75 situation, where the RSN performs better than HRnet and reaches
the second position. Compared to other OKS, all the keypoint deep
learning networks are sensitive to the OKS = 0.5 situation and gain
the highest scores. To provide a detailed perspective, Fig. 10 visualizes
the specifics of AP50. The AP value represents the ratio of the area
under the Precision–Recall curve to the ideal area (set to be one).
A more enormous AP value signifies an optimal performance of the
deep learning network. It is evident that the HRCSTrans AP curve
is closest to the top right corner of the recall/precision coordinates
system. This positioning indicates that the red curve (HRCSTrans) has
the largest area under the curve, emphasizing the robust keypoint
detection performance of HRCSTrans in the bolt connection detection
task, characterized by both high accuracy and stability.

In this work, the DS-MHSA is designed to replace MHSA in the
vanilla transformer, while MSF is designed to replace the feedforward
(FF) module. To prove the validity of DS-MHSA and MSF, an ablation
study is depicted in Table 4. The hybridization of high-resolution ar-
chitecture (HR) with convolution (CONV) or transformer is compared.
The HR+MHSA or HR+DS-MHSA works better than HR+CONV, gaining
at least 1.1 points on ap (87.2 compared to 86.1), illustrating that
using the transformer to replace convolution in HR architecture will
improve keypoint detection on bolt loosening evaluation tasks. The
combination of HR+DS-MHSA+MSF reaches 89.2 AP and works best.
The introduction of DS-MHSA gains 1.9 points (89.2 compared to 87.3)
and MSF gets 1.1 points (89.2 compared to 88.1). The ablation study
illustrates that the proposed DS-MHSA and MSF can effectively improve
the precision of bolt images’ keypoint detection.

Additionally, to assess the feasibility of implementing the HRC-
STrans in industrial environments, the computational cost is evaluated
and compared with other baselines. Three criteria are considered: the
number of model parameters, floating point operations (FLOPs), and
testing time per image. Table 5 presents the evaluation results for the
baselines in terms of these criteria. Benefiting from the delicate con-
volution and branchless structure, RSN achieves the minimum number
of parameters and FLOPs. The HRNet exhibits a 10% increase in pa-
rameters compared to RSN due to its utilization of the high-resolution
multi-branch architecture. Our HRTrans, which replaces convolution
with modified transformer blocks, experienced a 6% parameter increase
compared to HRNet. The global feature aggregation of the transformer
takes up more computing resources, leading to a 50% increase in FLOPs
(24.7 compared to 16.0). Although the HRTrans has larger model
parameters, its testing time ranks among the top three, being only
0.42 s slower than RSN and 0.28 s slower than HRNet. The proposed
method can realize the prediction in only 0.55 s, which is in the same
order of magnitude as the fastest RSN and demonstrates sufficient
industrial application value.

To further demonstrate the network performance of HRCSTrans,

the visualization of the location distribution heatmaps is shown in
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Fig. 11. Visualization of HRCSTrans heatmaps.
Table 5
Computational cost evaluation.

Model Parameters (M) FLOPs (G) Testing time (s)

OpenPose 25.94 160.36 2.02
G-RMI 42.6 57.0 1.21
CPN 58.8 29.2 1.03
SimpleBase 68.6 35.6 0.87
RSN 25.7 6.4 0.13
HRnet 28.5 16.0 0.27
Ours 30.1 24.7 0.55

Fig. 11. The left column is the input image tested by the keypoint
detection network. The blue line is the bounding box detected by
RetinaNet used as ROI, while the red line is the labeled ground truth.
The RetinaNet achieves 0.91 mean intersection over union (IoU) on the
bolt connection dataset. The IoU of these inputs are indicated in Fig. 11.
All the IoU are larger than 0.85, meaning the RetinaNet extracts the ROI
with an acceptable performance for the keypoint detection. In addition
to our method, we also visualize the top two performers among other
methods, the HRnet and RSN. Additionally, the keypoint detection
diagram, CPN, is also visualized. Compared to other methods, the
heatmap area of HRCSTrans is obviously concentrated, meaning that
the HRCSTrans has better network convergence and higher prediction
accuracy. Keypoints F and G are challenged to detect due to shadow
interference, and the phenomenon can be seen in the heatmap. The
heatmap area of F and G in the CPN and RSN is larger than the area
of other keypoints. The heatmap of keypoint F in HRnet is larger than
the other six keypoints, indicating the difficulty of detecting keypoint
F. Conversely, HRCSTrans exhibits consistent and smallest heatmap
areas across different keypoints, illustrating robust anti-interference
and stability in our method.
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4.3. Monocular camera measurement result

Utilizing the keypoints detection network, the 2D image coordinates
are obtained. The image coordinate (𝑢, 𝑣) and the camera parameters
obtained in Section 4.1 are transmitted to Eqs. (4)–(15), and the
predicted exposed length is calculated. Comparing these prediction
lengths to the ground truth measured by CMMS (Fig. 8), the method
error is evaluated. Randomly select two samples from each additional
ten-centimeter exposure length interval. The results are tabulated in
Table 6, revealing a maximum error of 0.074 mm, with none exceeding
0.1 mm and a minimum error of only 0.008 mm. The heatmaps of these
ten cases are shown in Fig. 12. The small heatmap areas detected by
the HRCSTrans indicate excellent keypoint detection performance.

To further illustrate the precision of our method, we also com-
pared the exposed length measurement results with other deep learning
networks, as depicted in Fig. 13. Among all the seven methods, Open-
Pose demonstrates the poorest performance with 0.632 mm error and
0.151 mm standard deviation (STD), while the HRnet reaches the
top one accuracy. The error distribution is linked to the AP value of
keypoint detection. Higher AP points indicate lower errors and STD.
HRCSTrans performs best during all the keypoint detection networks,
exhibiting a 0.053 mm error and a 0.028 mm STD. This represents
a 0.061 mm reduction in error compared to the second-best, HRnet
(0.053 compared to 0.114), and a 0.030 lower STD (0.028 compared
to 0.058). Empirical results from the experiment demonstrate that our
proposed method exhibits superior precision, coupled with minimal
error variability and enhanced stability. The average error of 0.053 mm
adding the maximum float is lower than 0.1 mm, meaning that our
approach satisfies the high precision assembly assurance requirements
of the industrial sector, ensuring reliable and accurate performance.
The vision-based method adapts to dynamic environmental changes
and keeps high accuracy under long-term multiple excitations. The
monocular measurement has been conducted under different vibration
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Fig. 12. Heatmaps of ten cases.
Fig. 13. Measurement results compare with other methods.

frequencies ranging from 500 to 2000 Hz. The hourly measured data
across ten hours shows no significant differences with static mea-
surement. Similarly, experimental testing at controlled temperature
from 0 to 60 degrees Celsius consistently showed low measurement
errors (<0.070 mm), indicating reliable performance under varying
conditions. The measurement accuracy of 0.053 mm also enables the
proposed vision system to observe slight changes in the connecting
part, providing the possibility to measure changes in prestress through
visual measurement. We conducted measurements for bolt connections
with prestress loading under 10 Nm, 15 Nm, 20 Nm, and 25 Nm initial
torques. The bolt length measured by the monocular vision also showed
strong correlations with the prestress measurement with small mean
absolute percentage errors. The monocular vision measurement model
realizes spatial distance calculation in 0.14 s, while the HRCSTrans
takes 0.55 s for an image prediction. The proposed bolt connection
loosening detection system spends 0.69 s for an image evaluation,
satisfying the real-time monitoring requirement.
11
Table 6
3D construction results and comparison with ground truth.

1 2 3 4 5

3D construction 12.674 mm 18.997 mm 20.547 mm 26.035 mm 35.165 mm
Ground truth 12.659 mm 19.033 mm 20.584 mm 26.109 mm 35.142 mm
Error 0.015 mm 0.036 mm 0.037 mm 0.074mm 0.023 mm

6 7 8 9 10
3D construction 38.226 mm 41.274 mm 45.741 mm 51.445 mm 52.289 mm
Ground truth 38.277 mm 41.234 mm 45.733 mm 51.376 mm 52.261 mm
Error 0.051 mm 0.040 mm 0.008 mm 0.069 mm 0.028 mm

4.4. System robustness test

In the preceding experiment, the evaluation of keypoints extraction
and 3D construction results substantiated the effectiveness and high
precision of our method. To further demonstrate the robustness of
the proposed method, the image acquisition is implemented in diverse
working situations, including different bolt materials, low brightness
lighting conditions, multiple objects, unclear backgrounds, and dif-
ferent standard sizes, as shown in Fig. 14. For each situation, two
examples are provided, each featuring two graphs. One graph presents
the keypoint detection outcomes and the measurement error of the
bolt’s exposed length, as computed by the 3D construction model and
CMM ground truth. The second graph displays the heatmap of the
corresponding target, with a local magnification added to elucidate the
visual details of keypoint detection results.

As for the different materials situation, the bolts made of stainless
steel and alloy steel are tested by our method. The measurement error
of the stainless steel bolt is 0.041 mm, similar to the experiment
results on the brass bolt, and the keypoint of the heatmap is well
converged. Due to the black color weakening the boundary between
the bolt and nut, the keypoint detection performance on alloy steel
bolts is worse than the stainless and brass. The heatmap of the area
of keypoints is obviously more extensive, and the error increases to
0.087 mm. Similar to the alloy steel bolt, the keypoint extraction results
deteriorate in the low brightness lighting condition situation, leading
to increased measurement errors in two examples (0.075 mm and
0.082 mm). Nevertheless, the measurement errors, even with weakened
boundaries, remain below 0.1 mm. The errors are significantly smaller
than the actual exposed bolt length, showcasing at least a 200-fold
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Fig. 14. Robustness test.
difference on the length scale. In the multiple objects situation, two
kinds of bolt arrays (two and four objects) are tested and yield an
average error of 0.0365 mm, with a maximum error of 0.052 mm.
Compared to the average error illustrated in Fig. 13 (0.053 mm),
HRCSTrans performance on the multiple objects situation is very stable
and accurate. To simulate a real industrial working environment, paint
marks are added to the background, increasing the difficulty of image
processing. Despite the complex background, HRCSTrans is still stable,
with 0.061 mm and 0.053 mm errors, respectively. There is no apparent
fluctuation in the heatmap results. Finally, bolts of different standard
sizes (M16 and M12) are tested on the HRCSTrans. The measurement
errors are only 0.018 mm and 0.035 mm, illustrating our method is
generalized and it can be adapted to different bolt sizes. In summary,
the measurement precision remains consistent in the multiple objects,
unclear background and different bolt standard sizes situations. As
12
for low brightness lighting conditions and alloy steel materials, where
image boundary blurring occurs, there is a slight increase in measure-
ment errors (no more than 0.05 mm). However, this error increase is
negligible relative to the bolt exposed length (0.05 mm compared to
30 mm).

To further illustrate the robustness of the proposed method, an
outside bolt connections dataset is constructed to test the HRCSTrans.
The outside dataset consists of 150 images, with 75 images allocated
for training and the remaining 75 images for testing. The parameters
of HRCSTrans are transferred from the training results in Section 4.2
and then trained using the outside dataset for 500 epochs. The outside
dataset encompasses various situations, including double nuts, the
corrosion surface, paint coating, and rainy weather conditions. The
measurement results and corresponding heatmaps for these cases are
presented in Fig. 15. The ground truth is measured by the vernier scale,
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Fig. 15. Outside bolt connections test.
and all the prediction errors are lower than 0.1 mm, which is consistent
with the indoor test accuracy. The convergence performance of the
heatmaps demonstrates the robustness of HRCSTrans in handling out-
side bolt connections. The robustness test affirms that our method can
adapt to diverse working situations and target objects, demonstrating
practical value in natural industrial environments.

4.5. Discussion

In the experiment section, an image acquisition platform featuring
various bolts is established. Following the collection of image informa-
tion, the bolt being measured is transported to a high-precision CMM to
ascertain the ground truth of the exposed length. All the images, with
annotated keypoints and matching ground truth, are used to construct
a deep learning data set. Our HRCSTrans and other keypoint detection
deep learning baselines are tested on this dataset. Then, the monocular
vision measurement model calculates the exposed bolt length based on
the keypoint extraction results with the camera calibration parameters.
The experiment results reveal that our HRCSTrans realized 91.6 AP50

prediction points and AR 84.9 points, positioning it as the SOTA
method in the bolt keypoint detection task. The measurement error of
the monocular camera model is only 0.053 mm with 0.028 mm STD.
Furthermore, our measurement method is tested in five different indus-
trial situations. The measurement performance consistently maintains
stability, with errors not exceeding 0.1 mm. This illustrates the high
robustness of our measurement method, demonstrating its adaptability
to effectively to the actual manufacturing environment. The use of
transformer mechanisms ensures the capacity of the proposed model
for large training data sets, increasing the potential for large-scale
industrial applications.

In future work, the distribution of data will be expanded to account
for more real-world scenarios, which aims to improve the reliability
of the method. Transfer learning and domain adaptation will be used
to reduce training costs and training data requirements. Additionally,
the implementation of monocular vision limits the system’s depth
perception capabilities. The proposed system will be combined with
the depth images to broaden the application scope of bolt connection
assessment. As for the deep learning model, this work exclusively
evaluates a singular model size. Multiple model sizes employing the
proposed backbone need to be developed to address the diverse data
sizes inherent in various industrial scenarios. Moreover, the proposed
vision system is dedicated to achieving high-precision measurement
13
and detecting the loosening state based on exposed length. There is
potential for further exploration of the relationship between bolt con-
nection prestress and exposed length. Specifically, the bolt connection
prestress can be recorded as a predictive label upon acquiring the
bolt image. This integration facilitates prestress prediction during the
exposed length calculation process.

5. Conclusion

In this paper, a keypoint detection deep learning network and
monocular vision measurement model hybrid system is proposed to re-
alize noncontact bolt measurement and connection loosening detection.
To obtain high precision keypoint extraction results, a new backbone,
HRCSTrans, is proposed, incorporating the transformer mechanism into
vision-based bolt connection loosening detection. To save the working
space on the image acquisition system, a monocular vision measure-
ment model is proposed to construct the 3D model of bolts and evaluate
the loosening state. Compared to contact monitoring methods, the
vision-based method can keep the integrity of the bolt connection and
save the time cost of data collection time. Additionally, different from
the force-sensor based measurement that requires tight connections, the
vision-based sensor can detect various loosening situations, providing
a wide range of measurements. The experiment results show that
HRCSTrans realizes the top one AP value and AR score compared with
other baselines. The ablation study verified the effectiveness of the
transformer and high-resolution hybridized architecture. The overall
measurement system reaches 0.053 mm precision and can adapt to
different dataset domains, indicating the deployment feasibility in real
industrial situations. The primary contributions of this study include:

(1) This is the first attempt to introduce the transformer mecha-
nism in the bolt keypoint detection for connection loosening detec-
tion. The transformer deep learning model provides an approximate
global view and extracts high precision keypoints, guaranteeing the
three-dimension construction of bolt surfaces.

(2) A novel keypoint detection backbone, HRCSTrans, is proposed
for effective keypoint feature learning. To further improve the base-
line performance, the transformer block is inserted into the multiple
resolutions architecture for aggregating affluent inter-level features.
The lightweight patch embedding and cross-scale transformer block are
designed to prevent the computational explosion caused by the mix of
multiple resolutions architecture and transformer block. To get better
intra-level information fusion, the dual-scale multi-head self-attention
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and multi-scale feedforward block are designed for cross patch feature
aggregation. The experiment depicts HRCSTrans realizing the top AP
and AR value in the bolt keypoint detection tasks. The convergence
effect of the heat map also verifies the stability and reliability of the
novel backbone.

(3) A new monocular 3D construction model based on 2D keypoints
coordinates is proposed. In contrast to the multi-vision system, the
proposed monocular model saves the cost of constructing multi-camera
coordinate system associations and minimizes the workspace in image
acquisition platform configuration. Moreover, this method accurately
calculates the 3D scale information of bolts without the need to attach
additional marks.

(4) The proposed measurement system achieves a fully automated
quantitative detection of the bolt connection loosening state. It can
reach 0.1 mm accuracy measurement, meeting industrial needs and
exceeding existing detection methods by an order of magnitude. The
method demonstrates robust performance across various industrial sit-
uations, including different bolt materials, low brightness lighting con-
ditions, multiple objects, unclear backgrounds, and different standard
sizes.

The monocular vision and deep learning hybrid bolt measure-
ment system address the connection loosening detection problem. With
trained networks and the monocular vision system, the exposed bolt
length can be calculated without attaching sensors or marks, providing
quantitative detection of connection statements. Experiment results
illustrate that HRCSTrans achieves SOTA performance in the bolt
keypoint detection tasks and affirm the precision of the monocular
vision measurement model. The system’s robustness is validated across
diverse working situations, confirming its deplorability in industrial
environments. In the future, the image acquisition scenarios will be
expanded to illustrate the method’s generalization capabilities.
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