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Exploiting Scale-Variant Attention for
Segmenting Small Medical Objects

Wei Dai , Student Member, IEEE, Rui Liu, Zixuan Wu, Tianyi Wu , Min Wang, Student Member, IEEE,
Junxian Zhou, Yixuan Yuan , Senior Member, IEEE, and Jun Liu , Senior Member, IEEE

Abstract—Early detection and accurate diagnosis can predict
the risk of malignant disease transformation, thereby increasing
the probability of effective treatment. Identifying mild syndrome
with small pathological regions serves as an ominous warning
and is fundamental in the early diagnosis of diseases. While deep
learning algorithms, particularly convolutional neural networks
(CNNs), have shown promise in segmenting medical objects,
analyzing small areas in medical images remains challenging.
This difficulty arises due to information losses and compression
defects from convolutional and pooling operations in CNNs,
which become more pronounced as the network deepens, espe-
cially for small medical objects. To address these challenges, we
propose a novel scale-variant attention-based network (SvANet)
for accurately segmenting small-scale objects in medical images.
The SvANet consists of scale-variant attention (SvAttn), cross-
scale guidance, Monte Carlo attention (MCAttn), and Vision
Transformer (ViT), which incorporates cross-scale features and
alleviates compression artifacts for enhancing the discrimina-
tion of small medical objects. Quantitative experimental results
demonstrate the superior performance of SvANet, achieving
96.12%, 96.11%, 89.79%, 84.15%, 80.25%, 73.05%, and 72.58%
in mean Dice (mDice) coefficient for segmenting kidney tumors,
skin lesions, hepatic tumors, polyps, surgical excision cells, retinal
vasculatures, and sperms, which occupy less than 1% of the
image areas in KiTS23, ISIC 2018, ATLAS, PolypGen, TissueNet,
FIVES, and SpermHealth datasets, respectively.

Index Terms—Attention mechanisms, medical image segmen-
tation, Monte Carlo method, small object detection, Vision
Transformer (ViT).
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I. INTRODUCTION

IT IS essential to detect and diagnose diseases or conditions
at their earliest stages, often prior to the manifestation of

symptoms. In the early stages of diseases such as glaucoma
[1], skin cancer [2], colorectal cancer [3], hepatocellular
carcinoma [4], and renal cancer [5], the pathological areas are
comparatively small and challenging to detect. The morpho-
metrics of these infected areas are believed to reflect the risk
and progression of diseases (e.g., cancer precursors) [1], [2],
[3], [4], [5], [6], [7]. Accurately delineating the boundaries
of lesions is crucial for their complete resection. Cell-level
imaging analysis is also a cutting-edge field with various
clinical applications, such as tumor resection analysis [6]
and in vitro fertilization [8]. However, examining cells can
be challenging due to differences in size, morphology, and
density, especially on a small scale.

A considerable number of images from various modalities
contain numerous lesions that occupy less than 10% of the
total image area [1], [2], [3], [4], [5], [6], as detailed in
Table I. Deep learning algorithms, which employ convolution
and pooling, can result in the loss of details for small objects,
leading to noticeable compression artifacts. To address the
diminished image resolution and information loss, strategies
include upscaling input data [9], expanding network architec-
tures [10], [11], [12], [13], [14], [15], tuning loss functions
[13], [16], [17], and postprocessing [13]. The attention mech-
anism is an efficient method for enhancing the focus on the
understated region by extending network variants [12], [13],
[14], [18], [19], [20], [21], [22]. However, small medical
objects pose unique challenges: they not only lack sufficient
pixels and information for straightforward local representation
extraction, but their relatively small size (e.g., occupying
less than 1% of the images) makes them difficult to capture
using global operations such as global-average pooling and
multihead self-attention.

To effectively analyze those comparatively small objects, it
is crucial to understand the changes in feature maps across
different levels of compression. Drawing an analogy from
animal eyes, which adjust the shape of their crystalline lenses
to tune visual perception of objects at varying distances,
we introduce a scale-variant attention (SvAttn) method. The
SvAttn method is integrated within a cross-scale guidance
module for “tracing” the behavior of small medical objects
by using cross-level features, as demonstrated in Fig. 1(a).

2162-237X © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and
similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.
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TABLE I
DATASET DETAILS: MEDICAL OBJECTS WITHIN EACH DATASET ARE

CATEGORIZED BY AREA RATIOS: BELOW 1% (ULTRASMALL), BELOW
10% (SMALL), AND 100% (ALL)

Fig. 1. Illustration of the intuitions of the core components of the proposed
methods. The example image depicts a skin lesion. (a) Tracing. (b) Detailing.

The SvAttn method stochastically samples attention maps
from different compression stages, enabling the network to
discern differences and similarities in object features at these
various stages. Concurrently, the cross-scale guidance module
leverages high-resolution feature maps from less-compressed
stages, enriching supplemental information for small medical
objects.

While exploring the evolution of features across different
compression stages is critical, it is equally important to
accurately identify small regions of interest within a single
stage. Traditional attention mechanisms in deep learning typ-
ically produce a fixed-dimension attention map [12], [23],
[24], [25], which concentrate on central features while often
overlooking the extensive contextual information present in
the background, vital for clinical interpretation. For instance,
in an abdominal slice image, the standard positional rela-
tionships among various organs (e.g., stomach, liver, kidneys,
spleen, and bone marrow) aid in accurately locating objects of
interest within a narrower range. Inspired by this observation,
we introduce the Monte Carlo attention (MCAttn) and an

assembly-based convolutional Vision Transformer (Assem-
Former) to enhance positional relationships for “detailing”
features of small medical objects, as illustrated in Fig. 1(b).
The MCAttn employs different attention map sizes that diver-
sify the receptive field and establish relationships among
objects from different regions. The AssemFormer combines
convolution with transformer specification to simultaneously
extract local and global information, thereby enhancing the
capability of feature learning.

The key contributions of this study are highlighted as
follows:

1) We propose SvANet, a new network that utilizes two
novel attention mechanisms and a Vision Transformer
(ViT) to identify small medical objects. To the best of
our knowledge, this is the first study to systematically
analyze small medical objects across seven medical
image modalities and diverse object types (i.e., retinal
vessels, skin lesions, polyps, livers, kidneys, tumors,
tissue cells, and sperms).

2) We introduce the SvAttn method, which captures the
positional and morphological essence of small medical
objects by generating attention maps based on the pro-
gressively compressed feature maps.

3) We develop the MCAttn module, which generates atten-
tion maps at different scales in a single stage by
using agnostic pooling output sizes. MCAttn learns the
object relations and spatial information of small medical
objects with consideration of both their position and
morphology.

4) We present AssemFormer, which enables the incorpo-
ration of both local spatial hierarchies and interpatch
representations, providing a comprehensive understand-
ing of the image data.

5) Equipped with these novel designs, SvANet achieved
top-level performance in segmenting medical objects
with less than 10% area ratio on seven benchmark
datasets, outperforming seven advanced methods. For
instance, SvANet achieved the highest mDice of 89.79%
and the lowest MAE of 1.6 × 10−3 in distinguishing
livers and liver tumors that cover less than 1% regions
in abdominal slices.

II. RELATED WORKS

A. Medical Object Segmentation

Surface structures, shapes, and sizes are critical in char-
acterizing medical objects. The morphometric data collected
from various devices and patients present a complex and
challenging landscape for analysis. In recent years, deep learn-
ing algorithms have shown remarkable potential in enhancing
diagnostic accuracy, reducing costs, and interpreting images
of diverse medical objects across various imaging modalities.
Thes modalities include ophthalmoscopy (Oph), dermatoscopy
(Derm), colonoscopy (COL), magnetic resonance imaging
(MRI), computerized tomography (CT), whole slide imaging
(WSI), microscopy (Microsc), electron microscopy (EM), and
X-ray [10], [11], [12], [13], [14], [15], [18], [19], [26], [27].
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One widely adopted structure for analyzing medical images
is the encoder–decoder-based construction, introduced by
Long et al. [28]. This approach involves extracting derived
features from an encoder and using a decoder to generate the
final segmentation mask. Building upon the encoder–decoder
structure, Ronneberger et al. [10] introduced “U-shaped”
architectures, which connect the limbs by using convolution
(U-Net) to disseminate information for segmenting tumor cells
or general objects. To further enhance the fusion of multiscale
features in analyzing medical images across CT, MRI, and EM
modalities, Zhou et al. [11] introduced U-Net++, an extension
of U-Net incorporating densely connected links. In addition,
Isensee et al. [26] broadened the application of U-Net from
2-D to 3-D medical imaging by self-adaptive configurations
(nnUNet).

To improve the performance of encoder–decoder archi-
tectures in perceiving medical images, advanced techniques
have been suggested. These techniques consist of attention
mechanisms [29], multinetwork branches [13], contrastive
learning [17], and feature interactions [13], [29]. For example,
Fan et al. [18] suggested a parallel reverse attention network
(PraNet) by integrating an upsampled feature generated by
the medium decoder to discern clearer bounaries of polyps
in COL images. Pan et al. [13] introduced a three-branch
“U-shaped” framework to ameliorate feature interactions by
postprocessing outputs from three branches with the watershed
algorithm for examining nuclei. In the study of CT scans of the
pancreas, Miao et al. [17] boosted the multibranch architecture
by facilitating contrastive learning and a consistency loss
function. When assessing polyps from six unique medical
centers, Jha et al. [29] integrated transformers with residual
connections of convolution to propagate information from
the encoder to the decoder. Despite the promising results of
the research above in medical image recognition, one aspect
overlooked is the size of medical objects, particularly small-
scale objects.

B. Small Medical Object Segmentation

The convolutional and pooling operations in deep learning
algorithms compress input data, thus damaging the morpholog-
ical characteristics of medical objects. To mitigate information
loss when reducing image resolution, one common method is
to upscale the input images to generate high-resolution feature
maps of small objects [9]. Another data augmentation method
involves concatenating three adjacent 2-D slices to generate a
mixed 2-D image, which helps to broaden the sample sizes of
small objects [30]. However, these preprocessing methods can
be time-consuming during training or testing due to the need
for image augmentation and feature dimension enlargement.

Another promising method to reduce compression artifacts
involves expanding network variants by incorporating tech-
niques, such as atrous convolution [31], skip connections [10],
[11], [26], feature pyramids [32], [33], multiple branches [12],
[13], [27], [34], or attention mechanisms [12], [13], [14], [18],
[19], which captures cross-scale features and contributes to
magnify small objects. For example, Zhao et al. [32] intro-
duced the pyramid scene parsing network (PSPNet), which
employs pyramid pooling and concatenates upsampled features

from multiple scales to improve context the feature learning.
Lou et al. [19] proposed a context axial reverse attention net-
work (CaraNet) to detect small polyps and brain tumors with
less than 5% size ratios. However, CaraNet lacks sufficient
interpretability regarding its practicality for segmenting small
medical objects, appearing more as a general design suited to
the segmentation task.

Designing new loss functions is another practical way to
boost small object identification. Guo et al. [16] proposed
a loss function that adopts the boundary pixel’s neigh-
bors to enhance the small object segmentation. In addition,
Pan et al. [13] combined six different loss functions for nuclei
diagnosis. Instead, Liu et al. [35] conducted backpropagation
using only those prioritized losses based on the rank of object
pixel counts and the magnitude of loss values. However, the
disadvantage of replacing the loss function is that it may not be
semantically understandable [16], [17], [35] or it can increase
the computational complexity [13]. Postprocessing, such as
the watershed algorithm [13], can also enhance small object
segmentation. However, postprocessing is a distinct step from
the segmentation model, and the network cannot adjust its
weights to the postprocessing results.

Previously, object sizes were quantified by object category
[16], [35], [36], number of pixels [9], or size ratio [19] in
the images. However, the size of the same object can vary
based on the distance between the object and the camera,
and computer vision algorithms often resize the entire input
image, resulting in changes in pixel numbers. Thus, relying
solely on the object category or the number of pixels cannot
accurately describe the size. This study categorizes medical
object sizes using area ratios, providing a more appropriate
measure tailored for medical images.

C. Attention Mechanisms

The attention mechanism is extensively employed in
semantic segmentation to prioritize salient features. Various
approaches have been proposed to incorporate attention in
different ways. Hu et al. [23] applied the squeeze–excitation
(SE) method to generate channel attention for learning
semantic representations. Zhou et al. [12] employed channel
attention to capture boundary-aware features for enhancing
polyp segmentation. To further extract spatial information,
Woo et al. [24] combined channel attention with spatial
attention in the convolution block attention module (CBAM).
Hou et al. [25] further advanced CBAM by introducing
coordinate attention (CoorAttn), which utilizes channelwise
average pooling to generate attention maps. Reverse attention
is another practical method to mine boundary cues. PraNet
[18] extracted fine-grained details by removing the estimated
polyp regions using boundary information. Lou et al. [19]
enhanced PraNet by decomposing attention maps along height
and width axes. Zhou et al. [37] employed channel separation
and pooling to adjust the sizes of feature maps for spa-
tial and channel attention; their use of fixed-size attention maps
constrained the diversity of attention mechanisms. Moreover,
relatively small feature maps (ranging from 1× 1 to 44× 44)
were employed to bridge area and boundary cues, which
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Fig. 2. Architecture of SvANet. Cross-scale guidance and SvAttn techniques, depicted in the top-left dashed boxes, integrate low-level and high-level feature
maps to trace the alterations in the shape and location of small medical objects. The modules MCAttn and MCBottleneck, positioned in the top-middle dashed
boxes, along with AssemFormer in the top-right dashed boxes, synergistically correlate local and global features to capture intricate object details.

may not adequately capture the structural details of minuscule
objects [14], [18], [19], [23], [37].

Moreover, self-attention is an effective attention scheme
to obtain dependencies and relationships within input data.
Based on self-attention mechanisms, ViT has been introduced
to process sequences of image patches to learn the inter-
patch representations, which has shown noticeable potential
in aggregating and preserving the features of small objects
[14]. He et al. [38] proposed a fully transformer-based network
that amalgamated spatial pyramid theory and ViT to identify
skin lesions. However, the vanilla ViT lacks inherent bias and
is susceptible to perturbations [39]. Zhang et al. [27] and
Pan et al. [13] employed self-attention to improve the
feature correlations in their convolutional neural network
(CNN)-based network for polyps and nuclei examination,
respectively. To capture long-range information when seg-
menting cell nuclei, Hörst et al. [40] replaced the CNN
encoder with a transformer block in the U-Net architecture.
Du et al. [15] incorporated shift-window techniques and a
multiscale attention module into a U-shaped architecture to
enhance the recognition of polyps and skin lesions. To leverage
cross-scale features and improve the capture of contextual
connections, Wu et al. [21] embedded feature maps from four
stages and further processed them with self-attention modules.
However, the aforementioned research overlooks the effect of
ViT on the analysis of small medical objects.

III. METHODOLOGY

A. Overall Framework

This section introduces the scale-variant attention-based
network (SvANet), specifically designed to segment small

medical objects. The SvANet model, schematically depicted
in Fig. 2, comprises four main components: cross-scale guid-
ance in Section III-B, SvAttn in Section III-C, MCAttn in
Section III-D, and the convolution with ViT in Section III-E.

Preserving the features of tiny medical objects, such as
sperms and retinal vessels, becomes challenging after multiple
pooling or strided convolutional operations. For example, after
two strided convolutions, a sperm may be reduced to being
represented by only one or two pixels in the image. In this
study, cross-scale feature maps are applied to guide the latter
stages in learning the features of small medical objects, as
indicated by the orange arrows in Fig. 2. The SvAttn and
cross-scale guidance are primarily designed to track feature
changes, particularly downsizing. Meanwhile, MCAttn and
AssemFormer distill multiscale attention maps for improved
contextual feature learning. To better comprehend the roles of
cross-scale guidance, SvAttn, MCAttn, and AssemFormer in
small medical object segmentation, we examined the feature
maps, as shown in Figs. 3–5. For simplicity, we selected
FIVES, ISIC 2018, KiTS23, and SpermHealth datasets to
visualize feature maps. We chose to present the outputs from
two cross-scale guidance correlations (see Fig. 3) and the
MCAttn-based bottleneck (MCBottleneck) in stage four (see
Fig. 4).

In addition, in Fig. 2, each Conv3 × 3 ↓ 2, represented by
black blocks, contains a single 3×3 convolution with a stride
of 2 (strided convolution). Every TConv3 × 3 ↓ 2, denoted
by gray blocks, consists of three convolution units: a 1 × 1
convolution, a 3 × 3 transposed strided convolution, and a
1×1 convolution. The MCBottleneck serves as a compression
point in the network, narrowing the tensor channels before
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Fig. 3. Output feature maps from cross-scale guidance without or with SvAttn.
These feature maps are generated from g(xs, t), which integrates features at
different scales. Example images in odd and even rows include ultrasmall
and small medical objects, respectively (GT: ground truth). (a) Input. (b) GT.
(c) s = 1 and t = 4. (d) s = 3 and t = 4. (e) s = 1 and t = 4. (f) s = 3 and
t = 4.

Fig. 4. Output feature maps from the MCBottleneck without or with an
attention mechanism. Example images in odd and even rows include ultrasmall
and small medical objects, respectively (GT: ground truth). (a) Input. (b) GT.
(c) Vanilla. (d) SE. (e) CBAM. (f) CoordAttn. (g) MCAttn.

expanding them to extract salient features by compressing the
input information, resembling a “bottleneck” in information
theory. To expand the receptive field and capture features at
multiple scales, atrous spatial pyramid pooling (ASPP) [31] is
integrated after the final stage of our model.

Merely classifying objects based on their category [16],
[35], [36] or pixel count [9] does not accurately describe size.

Fig. 5. Output feature maps from the AssemFormer. The feature maps are
extracted from four encoder stages individually (GT: ground truth). Since
the layer in the fifth stage is directly connected with the ASPP module,
no AssemFormer is used at this stage. (a) Input. (b) GT. (c) Stage 1.
(d) Stage 2. (e) Stage 3. (f) Stage 4.

This study defines “ultrasmall scale” medical objects as those
with an area ratio below 1%, and “small scale” as those below
10% for precise measurement of object sizes.

B. Cross-Scale Feature Guidance

The information content decreases significantly as the size
of the medical object reduces, owing to compression artifacts
in neural networks. This study introduces a cross-scale guid-
ance module to leverage the higher resolution features from
earlier model stages. Assume that t is the target stage, the
output yt can be computed as follows:

yt =

t−1X
s=1

g (xs, t) (1)

where xs represents the input tensor in stage s = 1, 2, . . . , t−1
and the transformation g(xs, t) involves (t − s) 3 × 3 strided
convolutions. The function is depicted by the orange arrows
and the top-left orange blocks in Fig. 2.

As illustrated in Fig. 3(c) and (d) or (e) and (f), the
highlighted region expands as the input stage increases for
the same target stage, t = 4. This expansion occurs due to
an increased total number of strided convolutional operations
performed on the data.

C. Scale-Variant Attention

Cross-scale feature guidance is based on convolutional oper-
ations, which have inherent limitations in processing global
feature representations. While global pooling operations can
facilitate learning context representations, it is restricted to
handling features uniformly. Given a subregion x j of an input



IE
EE P

ro
of

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

6             IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

tensor x, the output of vanilla global attention, denoted by
A(x), is calculated as follows:

A (x) =
1

σ (x)

nX
j=1

x j (2)

where x j represents the r2 neighborhood centered at the jth
subregion of x. Here, n denotes the total number of subregions,
and σ(x) represents the scalar function that normalizes the
result. For vanilla global attention, the default values are set
as r = 1 and n = σ(x) = Hx ×Wx.

Conventional global attention, as described in (2), fails
to capture relationships across subregions and is limited to
computing a single-scale size of the feature. To overcome
this scale limitation while maintaining long-range correlations,
we introduce SvAttn, which processes global dependencies
across diverse scales, as depicted by the yellow block in
Fig. 2. In SvAttn, multiscale attention maps are calculated
across input stages s = 1, 2, . . . , t − 1. Assuming that the
groupwise correspondence among input tensors is controlled
by a probability P1(x), the output attention map of SvAttn is
defined as follows:

At (x) =
1

σ (x)

nX
j=1

t−1X
s=1

P1
�
xs, j
�

xs, j (3)

where xs, j denotes the jth subregion of the input tensor at
the sth stage, t is the target stage, and x = [x1, x2, . . . , xt−1]−1

represents the vector of input tensors across various stages.
In addition, for the jth subregion, a single input stage is
randomly chosen with equal probability across all stages to
compute the attention map. For example, if P1(x1, j) = 1, then
P1(xs, j) = 0 where s , 1. Therefore, the correspondence
probability P1(x) satisfies the conditions

Pt−1
s=1 P1(xs, j) = 1

and
Qt−1

s=1 P1(xs, j) = 0, thereby ensuring a weighted sum
of attention maps across different scales. Since subregion
sampling is realized by masking tensors with random masks,
it does not increase model size. The scalar function σ(x) is
defined by

σ (x) = n =
H ∨W

2t+1 (4)

where H and W are the height and width of the input image,
respectively. The symbol ∨ denotes the logical OR operation.

In conjunction with (1) and (3), the output tensor y′t of cross-
scale guidance using SvAttn can be defined as follows:

y′t = At (x) yt. (5)

As indicated by (3), the subregions located at the same
proportional scaling position across stages are dynamic.
This variability enables the cross-scale guidance module to
effectively discern the relationships between the high-level
and low-level features. Consequently, SvAttn enhances the
network’s capability to recognize downsized small medical
objects throughout a sequence of stages. As illustrated in
Fig. 3(c) and (e) and (d) and (f), for the same source and target
stages, the features captured using SvAttn are more detailed
and comprehensive for both ultrasmall and small medical
objects compared with those obtained without using SvAttn.
For example, from top to bottom, there is a more precise

delineation of networked retinal vessels, more discernible
morphology of nevi, more pronounced instance boundaries of
organs such as kidneys, and finer details in sperm morphology.
In contrast, without using SvAttn, critical features such as
retinal vessels of glaucoma in the first and second rows, the
nevus in the third row, and the kidneys and cyst in the sixth
row were overlooked. It is noteworthy that ultrasmall objects
are harder to perceive compared to small objects without using
SvAttn. For example, moving downward from the odd rows of
Fig. 3(c) and (d), no retinal vessel was discovered, a relatively
small nevus region was highlighted, and the left kidney was
missed.

D. Monte Carlo Attention

The MCAttn module, as presented by the purple block
in Fig. 2, uses a random-sampling-based pooling operation
to generate scale-agnostic attention maps, enabling the net-
work to capture relevant information across different scales,
enhancing its ability to identify small medical objects. The
MCAttn generates attention maps by randomly selecting a 1×1
attention map from three scales: 3×3, 2×2, and 1×1 (pooled
tensors). In conventional methods such as SE, global-average
pooling is used to acquire a 1× 1 output tensor, which helps
calibrate the interdependencies between channels [23]. How-
ever, this approach has limited capacity to exploit cross-scale
correlations. To address this limitation, MCAttn calculates
the attention maps from features across three scales, thereby
enhancing long-range semantic interdependencies. Given an
input tensor, x, the output attention map of MCAttn, denoted
by Am(x), is computed as follows:

Am (x) =

nX
i=1

P2 (x, i) f (x, i) (6)

where i denotes the output size of the attention map, and
f (x, i) represents the average pooling function. Similar to
(3), the association probability P2(x, i) satisfies the conditionsPn

i=1 P2(x, i) = 1 and
Qn

i=1 P2(x, i) = 0, ensuring the gener-
ation of agnostic and generalizable attention maps. For the
input tensor x, a single pool size is randomly selected from
all available options, each with equal probability. n represents
the number of output pooled tensors and is set to 3 in this
study.

The Monte Carlo sampling method described in (6) allows
for the random selection of association probabilities, enabling
the extraction of both local information (e.g., angle, edge,
and color) and context information (e.g., whole image tex-
ture, spatial correlation, and color distribution). In Fig. 4(c),
the second to the fourth rows and the final row illustrate
that MCBottleneck, without using an attention mechanism,
struggles to detect the retinas and nevi and often overlooks
several sperms. Conversely, when attention mechanisms like
SE, CBAM, and CoordAttn are used, localization of densely
occupied regions (e.g., optic disk, kidneys, and sperms) is
enhanced compared to when no attention mechanism is used.
However, sparse regions, such as retinal vasculatures and
nevus centers, are often overlooked, especially the ultrasmall
ones, as shown in Fig. 4(c)–(f). Instead, using MCAttn in
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MCBottleneck, as depicted in Fig. 4(c) and (g), enhances
the discernibility of the morphology and precise location of
both ultrasmall and small medical objects compared with
when MCAttn is not used. For instance, in Fig. 4, moving
downward, MCBottleneck coupled with MCAttn emphasizes
more apparent retinal vessels for glaucoma, sharper boundaries
of nevi, and more perceptible morphology of kidneys, cysts,
and sperms. MCAttn also accentuates other medical objects of
interest, such as retinas, nevi, kidneys, and sperms, as shown
in Fig. 4(g).

E. Convolution With ViT

The proposed AssemFormer is illustrated in the top-right
dashed green boxes in Fig. 2. Inspired by [14] and [41],
AssemFormer incorporates a 3 × 3 convolution and a 1 × 1
convolution, followed by two transformer blocks and two
convolutional operations. AssemFormer bridges convolution
and transformer operations by stacking and unstacking feature
maps. Equipped with this design, AssemFormer tackles the
lack of inductive biases for the vanilla transformer.

The functionalities of convolution and transformer opera-
tions differ. Convolutional operations focus on learning local
and general features, such as corners, edges, angles, and
colors of medical objects. In contrast, the transformer module
extracts global information, including morphology, depth, and
color distribution of medical objects, utilizing multihead self-
attention (MHSA). In addition, the transformer module also
learns positional associations of medical objects, such as the
relationships between a tumor and the kidney, a kidney and
the abdomen, and a tumor and the abdomen within an MRI
slice image. The ViT algorithm employs a sequence of MHSA
and multilayer perceptron (MLP) blocks, each followed by
layer normalization [39]. The self-attention mechanism [42]
is formulated as follows:

AViT (q,k, v) = softmax
�

qkT

√
Dh

�
v (7)

where q, k, and v are the query, key, and value vectors of an
input sequence z ∈ RN×D, respectivley. N denotes the number
of patches, and D represents the patch size. Given m self-
attention operations, Dh, the dimension of q and k, is defined
as D/m.

Furthermore, a skip connection and concatenation are
incorporated to mitigate the information loss concerning
small medical objects. Leveraging the convolution-transformer
hybrid structure, the AssemFormer block can simultaneously
learn the local and global representation of an input medical
image. According to the ablation study presented in Section
IV-D2, the AssemFormer significantly improves the segmen-
tation performance of SvANet.

In Fig. 5, progressing from left to right, the AssemFormer
increasingly highlights smaller areas that more accurately align
with the ground truth (GT), especially notable in scenarios
with fewer medical objects. For instance, the first row of Fig. 5
demonstrates how the thin lines of retinal vasculature and light
reflections are initially emphasized, becoming progressively
thicker. Subsequently, these lines become shorter and more
focused on a smaller region corresponding to the optic disk

location, as depicted in the first two rows of Fig. 5(e) and (f).
Large-scale distortions, such as noise or compression defects,
play a role in this observed trend, where the concentration
of feature maps intensifies with a deeper layer. The pattern
of increased feature map concentration is consistent across
the segmentation of various medical objects, including skin
lesions, polyps, hepatic tumors, livers, kidneys, tissue cells,
and sperm.

The MHSA mechanism of AssemFormer, described in (7),
facilitates patch interactions and enriches the context informa-
tion. In contrast to Fig. 4, from left to right, the feature maps
evolve from AssemFormer from coarse to fine representations.
As illustrated in Fig. 5(f), the AssemFormer enhances the
visibility and precise localization of small medical objects such
as glaucoma, nevus, polyp, hepatic tumor, kidney, tissue cell,
and sperm, highlighting their morphological details and exact
positions.

IV. EXPERIMENTAL RESULTS

A. Evaluation Protocol

1) Dataset: To validate the effectiveness of SvANet, we
conducted tests alongside seven state-of-the-art (SOTA) mod-
els for small medical object segmentation across seven
benchmark datasets: FIVES [1], ISIC 2018 [2], PolypGen [3],
ATLAS [4], KiTS23 [5], TissueNet [6], and SpermHealth.

The FIVES dataset comprises 800 fundus photographs taken
with ophthalmoscopes featuring age-related macular degenera-
tion, diabetic retinopathy, glaucoma, and healthy fundus types.
The ISIC 2018 dataset includes skin lesion images collected
by dermatoscopes, encompassing healthy and unhealthy skin
areas. PolypGen, sourced from six different hospitals using
colonoscopes, focuses exclusively on polyps. The ATLAS
dataset consists of 90 MRI scans of livers, detailing two types
of medical objects: the liver and the tumor. KiTS23 has 599
CT scans of kidneys, categorized into three semantic classes
(i.e., kidney, tumor, and cyst). For experimental comparisons,
the ATLAS and KiTS23 datasets were converted into 2-D
image sequences. In addition, TissueNet includes images of
cells from the pancreas, breast, tonsil, colon, lymph, lung,
esophagus, skin, and spleen, derived from humans, mice, and
macaques, collected using cell imaging platforms such as
CODEX and CyCIF, with annotations for whole cells and their
nuclei.

SpermHealth is a customized dataset from the 3rd Affiliated
Hospital of Shenzhen University, consisting of low-resolution
sperm images (640 × 480 and 96 DPI) extracted from
microscope-captured videos. These images have been metic-
ulously annotated into normal and abnormal categories by
experienced fertility doctors. Further details of the datasets
used in the tests are presented in Table I.

2) Implementation Details and Evaluation Metric: In this
study, the mini-batch size was set to 4. Data augmentation
strategies applied to preprocess the input images included
random horizontal flips, random cropping to a resolution of
512×512, Gaussian blur, distortion, and rotation. The AdamW
optimizer [43] and a cross-entropy loss function were utilized,
with the learning rate decaying from 5 × 10−5 to 1 × 10−6

following a cosine schedule [44]. The total training process



IE
EE P

ro
of

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

8             IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

spanned 100 epochs. The results were calculated by averaging
the outcomes from three times of training and testing cycles.
All backbone was pretrained in the ImageNet-1K [45] dataset.
In addition, all tested methods followed the configurations
above of training, except that nnUNet utilized official settings
[26] for training.

The experiments were conducted on an RTX 4090 GPU
with an AMD Ryzen 9 7950X CPU. The metrics used to
assess the performance of semantic segmentation include the
mean Dice (mDice) coefficient, mean intersection over union
(mIoU), and mean absolute error (MAE). Given the critical
role of sensitivity in medical diagnosis for identifying infected
patients among all subjects and facilitating timely treatment,
we also incorporated sensitivity and F2 score as key perfor-
mance metrics.

B. Results for Datasets With Diverse Object Sizes

The experimental results for the FIVES, ISIC 2018, Polyp-
Gen, ATLAS, KiTS23, and TissueNet datasets are summarized
in Table II. These results demonstrate that SvANet outper-
forms other SOTA methods across all metrics for ultrasmall
and small medical object segmentation across six datasets
tested.

As presented in Table II, SvANet outperformed other SOTA
methods across three object scales in the FIVES, ISIC 2018,
and ATLAS datasets, excluding sensitivity of 93.54% and
87.13% in ISIC 2018 and ATLAS datasets and MAE of
5.35×10−4 and 6.6×10−3 in FIVES and ATLAS datasets for
the “all” object scale, as summarized in Table II. In addition,
SvANet surpasses other methods with increments in the mDice
of at least + 2.95% and + 5.23%, mIoU of + 1.97% and
+ 5.78%, sensitivity of + 0.19% and + 5.03%, and F2 score
of + 1.28% and + 5.15% for differentiating ultrasmall and
small retinal vessels in the FIVES dataset. However, MAE
is comparatively high (> 7.5 × 10−3) in ultrasmall retinal
vasculature segmentation across all tested models, potentially
due to the minimal number (4) of ultrasmall objects providing
insufficient learnable features for deep learning algorithms. In
ISIC 2018 and ATLAS datasets, SvANet excelled in segment-
ing ultrasmall objects (i.e., skin lesions, livers, and hepatic
tumors) with mDice of 96.11% and 89.79%, mIoU of 92.76%
and 86.06%, sensitivity of 98.35% and 86.68%, and F2 score
of 97.42% and 87.71%. These results suggest significant
potential for SvANet in diagnosing dermatological skin lesions
and hepatic tumors in MRI scans, particularly for objects with
an area ratio smaller than 1% or 10%. Thus, SvANet can
ameliorate therapeutic approaches such as excision therapy,
laser therapy, electrosurgery, and radiotherapy for treating
these conditions.

Furthermore, the segmentation results for the PolypGen and
KiTS23 datasets demonstrate that SvANet delivers superior
performance than other SOTA methods across three object
scales. Specifically, SvANet achieved the highest mDice of
84.15% and 96.12%, 91.17% and 94.01%, and 93.16% and
94.54% for ultrasmall, small, and all medical object scales
in PolypGen and KiTS23 datasets, respectively. Moreover,
SvANet delivered up to 14.83% and 2.76%, 6.23% and 6.88%,
and 6.93% and 6.33% increments in F2 score over other

tested methods for ultrasmall, small, and all object scales in
PolypGen and KiTS23 datasets, respectively. The F2 score,
the harmonic mean of sensitivity and precision, underscores
the robustness of SvANet in medical object segmentation.
SvANet also recorded the lowest MAE, 1.01 × 10−4 and
2.0 × 10−2, 6.6 × 10−3 and 7.0 × 10−2, and 8.1 × 10−3 and
8.0×10−2 across three object scales for PolypGen and KiTS23
datasets, indicating a high level of precision in the pixel-level
recognition of polyps, kidneys, renal tumors, and cysts.

In the TissueNet dataset, which includes only ultrasmall
and small cells, Table II reveals that the SvANet leads in
segmentation performance, achieving 80.25% and 88.05%
in mDice, 71.60% and 79.45% in mIoU, 7.22 × 10−4 and
3.28 × 10−4 in MAE, 83.36% and 88.07% in sensitivity,
and 82.00% and 88.06% in F2 score, across ultrasmall and
small medical object scales, respectively. Notably, SvANet
performance is essentially distinguished in the segmentation
of ultrasmall tissue cells, surpassing other SOTA models by at
least + 9.60% in mIoU, + 8.50% in mDice, and + 6.61% in F2
score. This superior performance contrasts with improvements
of less than 5% observed in the five other datasets, as shown
in Table II, which may be attributed to the relatively large
number of ultrasmall objects in TissueNet (i.e., 9096 cells,
approximately ten times more objects than other datasets).

Furthermore, the mDice results trends for all tested methods
across ultrasmall, small, and all medical object segmenta-
tion in FIVES, ISIC 2018, PolypGen, ATLAS, KiTS23, and
TissueNet datasets are illustrated in Fig. 6. This figure high-
lights that the SvANet, represented by the red line, consistently
leads across diverse object scales and datasets.

In the FIVES dataset, as shown in Fig. 6(a), only SvANet
exhibits an increasing mDice as object scale increases, while
other methods’ mDice initially increases and then decreases.
The subbranches of retinal vessels are relatively thin, and the
number of vessels increases as the occupied area expands.
Therefore, the subbranches become more difficult to discrim-
inate, decreasing mDice as the object scale range expands
from ≤ 10% to ≤ 100%. However, SvANet maintains a
growing trend without decline, demonstrating its effective-
ness in recognizing retinal vasculatures, which is crucial for
diagnosing blindness-causing diseases. In addition, in ISIC
2018 and KiTS23 datasets, SvANet and over half of the other
methods exhibit a mDice trend resembling an “L” shape, as
depicted in Fig. 6. Fewer ultrasmall objects in these datasets
introduce significant variability, likely contributing to this
“L” trend. In the PolypGen, ATLAS, and TissueNet datasets,
there is a consistent increase in mDice trends, as shown in
Fig. 6(c), (d), and (f). Notably, no change is observed in
TissueNet between the small and all object scales, as both
categories contain identical medical images. Closer inspection
of Fig. 6(d) and Table II reveals that SvANet is the only
method that achieved a “V” trend in the ATLAS dataset, with
the best mDice of 89.79% for segmenting ultrasmall compared
to small and all sizes of livers and tumors, underscoring
SvANet’s capability to effectively discriminate ultrasmall
medical objects.

In addition, U-Net, U-Net++, nnUNet, CFANet, and
TransNetR obtained mean standard error (mSE) values
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TABLE II
QUANTITATIVE RESULTS IN FIVES, ISIC 2018, POLYPGEN, ATLAS, KITS23, AND TISSUENET DATASETS, DIVIDED BY AREA RATIOS OF MEDICAL

OBJECTS: BELOW 1% (ULTRASMALL), BELOW 10% (SMALL), AND 100% (ALL). THE BEST RESULTS ARE UNDERLINED IN BOLD

exceeding 1 in one or two of FIVES, ISIC 2018, and TissueNet
datasets, suggesting potential instability of these methods.
In contrast, all tested methods in the PolypGen, ATLAS,

and KiTS23 datasets exhibited mSE values lower than 1,
demonstrating consistent segmentation performance across
these three datasets. Moreover, SvANet consistently achieves
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TABLE III
QUANTITATIVE ANALYSIS OF THE SPERMHEALTH DATASET HIGHLIGHTING MODEL SIZE AND INFERENCE TIME COMPARISONS. ALL SPERMS IN THIS

DATASET OCCUPY LESS THAN 1% OF THE IMAGES’ AREA. THE BEST RESULTS ARE UNDERLINED IN BOLD

Fig. 6. Segmentation mDice across different area ratios of medical objects in (a) FIVES, (b) ISIC 2018, (c) PolypGen, (d) ATLAS, (e) KiTS23, and
(f) TissueNet datasets. mSE refers to the mean standard error across three object scales.

mSEs of less than 0.8 across all datasets and displays narrow
error bars (shown as color bands) across three object scales,
indicating its robustness in accurately recognizing medical
objects.

C. Results for the Dataset With Only Ultrasmall Objects

To further evaluate the performance of SvANet in dis-
tinguishing ultrasmall medical objects, experiments were
conducted in the SpermHealth dataset, which exclusively has
sperms with an area ratio of less than 1%. As shown in
Table III, SvANet secured top performance in sperm segmen-
tation within the SpermHealth dataset, achieving 72.58% in
mDice, 61.44% in mIoU, 13.06×10−4 in MAE, 72.50% in sen-
sitivity, and 72.51% F2 score. SvANet’s performance in sperm
segmentation notably exceeded that of other models, surpass-
ing them by up to 15.88% in F2 score, 14.99% in sensitivity,
14.64% in mDice, and 11.86% in mIoU. In addition, the
performance metrics (mDice, mIoU, sensitivity, and F2 score)
gained in the SpermHealth dataset are significantly lower
than those observed in ISIC 2018, PolypGen, ATLAS, and
KiTS23 for all tested models, with a gap of >10%, because

Fig. 7. ROC curves for tested models in the SpermHealth dataset.

all sperms have an area lower than 1%, presenting limited
learnable features and posing more significant challenges for
differentiation.

To quantify the robustness and adaptability of SvANet
versus other SOTA methods, receiver operating characteristic
(ROC) curves of seven tested methods in the SpermHealth
dataset are employed and illustrated in Fig. 7. The ROC curve
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TABLE IV

ABLATION STUDY RESULTS ON THE MAIN COMPONENTS OF SVANET.
THE BEST RESULTS ARE UNDERLINED IN BOLD. %: CANCEL THE

SETTING AND X: USE THE SETTING

TABLE V

COMPARISON OF MCATTN WITH OTHER ADVANCED ATTENTION
METHODS. THE BEST RESULTS ARE UNDERLINED IN BOLD

of SvANet, represented by the red line in Fig. 7, blends nearest
toward the top-left corner, with the highest area under the
curve (AUC) of 0.9905, surpassing other SOTA methods by
up to AUC of + 0.008. In addition, the ROC curve of U-Net++

is close to the lower-right corner and under all other curves,
with the lowest AUC of 0.9825. The ROC and AUC results
of U-Net++ are consistent with Table III, demonstrating that
U-Net++ struggled to recognize sperms.

D. Ablation Studies

Unless otherwise specified, all ablation studies were con-
ducted in the SpermHealth dataset for the sake of simplicity.

1) Inference Time: This section quantifies the inference
characteristics of the tested networks, including the number
of parameters (# Parameters), multiply–accumulate operations
(MACs), and inferencing speed. The unit of inference speed
is frames per second (FPS). The number of classes was
set to eight, and other configurations were consistent with
those described in Section IV-A2. The inference speed results,
averaged over 1000 runs, are presented in Table III.

Table III illustrates that SvANet achieved a real-time
analysis of medical images with 55 FPS. Notably, while
SvANet consumed 312.76 billion MACs—two times more
than CFANet—it performed at only 1 FPS lower than CFANet.
This discrepancy highlights that MACs, as theoretical indica-
tors of computational cost, do not fully capture the effects
of hardware or software optimizations for inference. Despite
the high computational load, SvANet’s performance remains
well-suited for self-examination and clinical diagnostic
applications.

TABLE VI

SIZE COMBINATIONS OF POOLED FEATURE MAPS IN MCATTN.
THE BEST RESULTS ARE UNDERLINED IN BOLD

In addition, a streamlined version of SvANet, named
LiteSvANet, was developed by omitting the fifth encoder stage
while retaining the ASPP on the fourth encoder stage, reducing
the parameter count by 70%. Subsequent tests, under identical
conditions (described in Section IV-A2), demonstrated that
LiteSvANet achieved a mDice of 70.88% and a sensitivity
of 69.96% in the SpermHealth dataset, surpassing the perfor-
mance of the second-best method, TransNetR, as shown in
Table III. Moreover, LiteSvANet significantly enhanced the
inference speed to 77 FPS, which, while 23% lower than
the fastest models (U-Net++ and TransNetR), represents a
considerable improvement over the standard SvANet model.
For straightforward applications, implementing LiteSvANet is
advantageous for examining small medical objects.

2) Main Components Ablation: To investigate the influence
of each core module of SvANet (i.e., MCBottleneck, MCAttn,
cross-scale guidance, SvAttn, and AssemFormer), ablation
studies were conducted and discussed in this section.

To investigate the influence of specific modules, we con-
ducted experiments in which each module was individually
included. MCAttn and SvAttn are part of MCBottleneck
and cross-scale guidance, respectively. As presented in
Table IV—(b)–(f), the inclusion of MCBottleneck, MCAttn,
cross-scale guidance, SvAttn, and AssemFormer led to mDice
improvements of + 0.15%, + 0.67%, + 0.27%, + 0.47%, and
+ 0.38%. Such results underscore the prominent contributions
of MCAttn, SvAttn, cross-scale guidance, and AssemFormer
in enhancing mDice. Specifically, SvAttn and MCAttn each
contributed over 0.4% improvements in mDice.

Compatibility analysis of module combinations was con-
ducted, with the results presented in Table IV(g)–(j). The
combinations of all modules, excluding any attention mech-
anisms as shown in Table IV—(g), resulted in a + 0.46%
increase in mDice, indicating that while nonattention mod-
ules are essential, they alone are insufficient to effectively
enhance the learning capabilities of SvANet. In addition,
Table IV—(h), which included MCAttn and SvAttn in a
nontransformer version of SvANet, showed a notable improve-
ment of + 1.32% mDice.

To elucidate the specific contributions of the “detailing”
and “tracing” concepts introduced in Fig. 1, separate abla-
tion studies were performed by excluding combinations of
MCAttn + AssemFormer and cross-scale guidance + SvAttn,
respectively. As shown in Table IV—(i) and (j), both
“detailing” and “tracing” modules contributed comparable
contributions to the mDice. Without “detailing” modules
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Fig. 8. Examples of segmentation results across tested methods in (a) FIVES, (b) ISIC 2018, and (c) PolypGen datasets for error analysis. Examples contain
ultrasmall objects (i.e., polyp), small objects (i.e., nevus), and objects with >10% area ratio (i.e., retinal vessel).

(MCAttn + AssemFormer), SvANet registered 71.64% in
mDice. Conversely, when the “tracing” modules (cross-scale
guidance + SvAttn) were omitted, the performance decreased
to 71.60% in mDice.

By integrating all five modules, SvANet obtained the high-
est improvement in mDice of + 1.48%, revealing the necessity
of each module. All p-values for mDice are below 0.05,
confirming the result’s reliability.

3) MCAttn Versus Other Advanced Attention Methods: To
assess the impact of different attention mechanisms within the
MCBottleneck, three advanced attention modules, including
SE, CBAM, and CoorAttn, were utilized as the control group.
According to the results shown in Table V, MCAttn achieved
performance improvements of over + 1.15% in mDice and
+ 1.12% sensitivity compared to these alternatives. Notably,
the control group’s attention methods resulted in reduced
performance, with decreases of up to −0.83% in mDice and
−0.41% in sensitivity, underscoring the superior efficacy of
MCAttn in enhancing medical image segmentation within a

bottleneck structure. The p-value for mDice is below 0.05,
affirming the reliability of the result.

4) Number of Pooled Tensors for MCAttn: The selection
of the size and number of pooled tensors for MCAttn is cru-
cial for expanding network variants. We tested combinations
(1, 2), (1, 2, 3), (2, 3), and (1, 2, 3, 4). The results, shown in
the first, second, and fourth rows of Table VI, reveal that the
(1, 2, 3) combination of pooled tensors outperformed (1, 2) and
(1, 2, 3, 4) combinations, with improvements exceeding 2.86%
and 1.19% in mDice and 4.01% and 1.66%, respectively.
Further analysis, as indicated in the second and third rows of
Table VI, highlights the necessity of a pool size of 1, leading
to an increase of 0.82% in mDice and + 2.27% in sensitivity.
These findings emphasize the importance of maintaining an
optimal level of variation in the network. An insufficient
pooled tensor can limit performance, whereas an excessive
number can introduce too much stochasticity. Thus, striking
the right balance is critical for maximizing the effectiveness
of MCAttn within the model.
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Fig. 9. Examples of segmentation results across tested methods in (a) ATLAS, (b) KiTS23, (c) TissueNet, and (d) SpermHealth datasets for error analysis.
Examples contain ultrasmall objects (i.e., tumor, cyst, tissue cell, nucleus, and sperm), small objects (i.e., kidney), and objects with >10% area ratio
(i.e., liver).

Furthermore, variations in pooled tensor sizes result in less
than a 0.05% difference in MACs, indicating a negligible
influence on computational complexity. Given that pooling
operations do not add parameters to the model size and
increase the MACs by less than 0.01%, MCAttn’s impact on
the network’s computational performance is minimal.

E. Negative Case Studies

Examples of visualization results for ultrasmall and small
medical objects in the FIVES, PolypGen, ISIC 2018, ATLAS,
KiTS23, TissueNet, and SpermHealth datasets are presented in
Figs. 8 and 9. As illustrated in Fig. 9(a), U-Net misclassified
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diabetic retinopathy (green region) as age-related macu-
lar degeneration (red region). Similarly, U-Net++, HRNet,
nnUNet, and TransNetR misclassified diabetic retinopathy as
healthy retinal vessels (blue region), while PraNet misclas-
sified it as glaucoma (yellow region). In addition, PraNet
struggled to detect retinal vasculature in the zoomed-in region.
Furthermore, none of the SOTA methods in the control group
could accurately recover the retinal vessels at the bottom of
the zoomed-in region. In contrast, SvANet not only correctly
classified diabetic retinopathy but also effectively detected the
position and shape of retinal vessels.

In the skin lesion examination illustrated in
Fig. 9(b), U-Net, U-Net++, HRNet, and nnUNet misclassified
normal skin as a nevus. Moreover, U-Net, PraNet, nnUNet,
CFANet, and TransNetR represented the nevus region as a
relatively smooth circle, while U-Net++ and HRNet captured
a larger region encompassing the GT annotations, leading
to an underestimation of the lesion boundary. In contrast,
SvANet accurately identified a skin lesion of similar size to
the GT and delineated its sawtooth-shaped boundary. For the
polyp diagnosis as presented in Fig. 9(c), SOTA methods
such as PraNet and nnUNet either detected a smaller polyp
area than the GT, or other methods, including CFANet and
TransNetR, regarded a larger region than the GT. In addition,
U-Net, U-Net++, and HRNet failed to detect the polyp
in the example image. Furthermore, the detected regions
from the methods in the control group significantly deviated
from the GT. However, SvANet recognized an area close to
the GT and maintained shapes akin to GT annotations.

For MRI and CT image modalities analysis, as shown in
Fig. 9(a) and (b), it is possible to overlook the overlapping
medical objects, particularly ultrasmall ones. For instance,
all tested models in the control group failed to identify
an ultrasmall tumor inside the liver. In addition, HRNet,
nnUNet, and TransNetR missed an ultrasmall cyst at the edge
of the kidney. Moreover, U-Net++ and CFANet incorrectly
emphasized the background as a tumor or liver region in the
example image, and U-Net misclassified a cyst as a tumor.
Although the organ region (e.g., liver and kidney) detected
by SOTA methods in the control group appeared complete,
the pathological regions, such as the tumor and cyst, were
either larger (hepatic tumor) or smaller (cyst) than the GT in
the example image. However, SvANet accurately differentiated
between organs and their pathological regions. Furthermore,
SvANet captured the morphological details of the liver, hepatic
tumor, kidney, and cyst in the example image, closely aligning
with the GT annotations.

For tissue cell recognition in the TissueNet dataset, as
shown in Fig. 9(c), both TransNetR and SvANet effectively
delineated cell boundaries and accurately labeled the cells
and nuclei regions, closely resembling the GT. In contrast,
other SOTA methods struggled to categorize cells and nuclei,
leading to difficulties in differentiating cell boundaries and
merging several cells. For sperm cell analysis, as presented
by the final image in Fig. 9(d), SvANet precisely located
all sperm positions and effectively recognized the region
of the short tail of an abnormal sperm. Conversely, tested
methods like PraNet and CFANet struggled to differentiate

the head and tail of the unhealthy sperm, as illustrated in the
zoomed-in region of Fig. 9(d). Moreover, U-Net, U-Net++,
HRNet, nnUNet, and TransNetR misclassified an unhealthy
sperm head as healthy, as indicated by a green subregion in
Fig. 9(d).

These visualization results align with the findings discussed
in Sections IV-B and IV-C, suggesting that SvANet holds
significant potential for application in general small medical
object recognition across various medical imaging modalities
for disease diagnostics and surgeries.

V. CONCLUSION

This article introduces SvANet, a novel network to enhance
the segmentation of small medical objects, aiding in the
detection of life-threatening diseases and supporting in vitro
fertilization. The experimental results demonstrate that the
SvANet is significantly effective in distinguishing medical
objects of various sizes. SvANet consistently outperformed
other SOTA methods, achieving up to 19.95%, 15.03%,
15.01%, 14.64%, 13.57%, 8.09%, and 3.07% increments
in mDice for segmenting objects occupying less than 1%
image area across TissueNet, FIVES, ISIC 2018, SpermHealth,
PolypGen, ATLAS, and KiTS23 datasets. Furthermore, the
visualization results confirm that SvANet accurately identifies
the locations and morphologies of all medical objects, demon-
strating its exceptional capability in segmenting small medical
objects. These findings underscore the potential of SvANet as
a significant advancement in medical imaging.

In addition, SvANet features a substantial model size of
over 150 million parameters and a computational burden of
over 300 billion MACs, which is best suited for scenar-
ios that can accommodate its high computational demands
and require enhanced recognition accuracy. In contrast,
LiteSvANet, streamlined to around 53 million parameters,
offers a viable alternative for integration into low-performance
devices, balancing computational efficiency with performance
needs.
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